Skip to main content
Log in

Characterization of peptidoglycan hydrolase in Cag pathogenicity island of Helicobacter pylori

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The Cag Type IV secretion apparatus proteins in Helicobacter pylori can mediate the injection of effector CagA protein into eukaryotic target cells. Although this apparatus forms an important pathway for bacterium–host interaction, its assembly process in vivo is poorly understood, and the proteins which contribute to break the bacterial cell walls in Cag-PAI have not yet been identified. The cagγ gene in Cag-PAI is a unique member that contains a conserved SLT catalysis domain, which makes it an attracting question whether cagy gene has the capacity to digest the bacterial cell wall. In the current study, therefore, the cagγ gene was cloned from the H. pylori NCTC 11637 and expressed in Escherichia coli, and its lytic effect on cell walls in vitro was observed. Results indicated that Cagγ protein has a lytic activity against bacterial cell walls. An allelic-exchange mutant (Δcagγ) was further constructed to investigate the relationship between Cagγ and effector CagA translocation. These results suggested that Cagγ contributed to the assembly of Cag Type IV secretion apparatus by digesting the peptidoglycan meshwork of bacterial cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dundon WG, de Bernard M, Montecucco C (2001) Virulence factors of Helicobacter pylori. Int J Med Microbiol 290:647–658

    CAS  PubMed  Google Scholar 

  2. Xiao B, Li W, Guo G et al (2009) Screening and identification of natural antisense transcripts in Helicobacter pylori by a novel approach based on RNase I protection assay. Mol Biol Rep 36:1853–1858

    Article  CAS  PubMed  Google Scholar 

  3. Zhang X, Shen W, Lu Y et al (2010) Expression of UreB and HspA of Helicobacter pylori in silkworm pupae and identification of its immunogenicity. Mol Biol Rep [Epub ahead of print]

  4. Backert S, Ziska E, Brinkmann V et al (2000) Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol 2:155–164

    Article  CAS  PubMed  Google Scholar 

  5. Bourzac KM, Guillemin K (2005) Helicobacter pylori–host cell interactions mediated by type IV secretion. Cell Microbiol 7:911–919

    Article  CAS  PubMed  Google Scholar 

  6. Handa O, Naito Y, Yoshikawa T (2007) CagA protein of Helicobacter pylori: a hijacker of gastric epithelial cell signaling. Biochem Pharmacol 73:1697–1702

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Q, Li Y, Li X et al (2009) PARP-1 Val762Ala polymorphism, CagA + H. pylori infection and risk for gastric cancer in Han Chinese population. Mol Biol Rep 36:1461–1467

    Article  CAS  PubMed  Google Scholar 

  8. Backert S, Meyer TF (2006) Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9:207–217

    Article  CAS  PubMed  Google Scholar 

  9. Juhas M, Crook DW, Hood DW (2008) Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 10:2377–2386

    Article  CAS  PubMed  Google Scholar 

  10. Demchick P, Koch AL (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178:768–773

    CAS  PubMed  Google Scholar 

  11. Hoppner C, Liu Z, Domke N, Binns AN, Baron C (2004) VirB1 orthologs from Brucella suis and pKM101 complement defects of the lytic transglycosylase required for efficient type IV secretion from Agrobacterium tumefaciens. J Bacteriol 186:1415–1422

    Article  PubMed  Google Scholar 

  12. Bayer M, Eferl R, Zellnig G et al (1995) Gene 19 of plasmid R1 is required for both efficient conjugative DNA transfer and bacteriophage R17 infection. J Bacteriol 177:4279–4288

    CAS  PubMed  Google Scholar 

  13. Fullner KJ (1998) Role of Agrobacterium virB genes in transfer of T complexes and RSF1010. J Bacteriol 180:430–434

    CAS  PubMed  Google Scholar 

  14. Hong PC, Tsolis RM, Ficht TA (2000) Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun 68:4102–4107

    Article  CAS  PubMed  Google Scholar 

  15. Loessner MJ (2005) Bacteriophage endolysins—current state of research and applications. Curr Opin Microbiol 8:480–487

    Article  CAS  PubMed  Google Scholar 

  16. Kim KM, Lee SG, Park MG et al (2007) Gamma-glutamyltranspeptidase of Helicobacter pylori induces mitochondria-mediated apoptosis in AGS cells. Biochem Biophys Res Commun 355:562–567

    Article  CAS  PubMed  Google Scholar 

  17. Blackburn NT, Clarke AJ (2000) Assay for lytic transglycosylases: a family of peptidoglycan lyases. Anal Biochem 284:388–393

    Article  CAS  PubMed  Google Scholar 

  18. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  19. Wang J, Xu C (2000) Biochemistry, vol 1, 3rd edn. Higher Education, Beijing, pp 390–392 (in Chinese)

    Google Scholar 

  20. Thunnissen AM, Rozeboom HJ, Kalk KH, Dijkstra BW (1995) Structure of the 70-kDa soluble lytic transglycosylase complexed with bulgecin A. Implications for the enzymatic mechanism. Biochemistry 34:12729–12737

    Article  CAS  PubMed  Google Scholar 

  21. van Asselt EJ, Thunnissen AM, Dijkstra BW (1999) High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment. J Mol Biol 291:877–898

    Article  PubMed  Google Scholar 

  22. Baron C, Coombes B (2007) Targeting bacterial secretion systems: benefits of disarmament in the microcosm. Infect Disord Drug Targets 7:19–27

    Article  CAS  PubMed  Google Scholar 

  23. Ziedaite G, Daugelavicius R, Bamford JK, Bamford DH (2005) The holin protein of bacteriophage PRD1 forms a pore for small-molecule and endolysin translocation. J Bacteriol 187:5397–5405

    Article  CAS  PubMed  Google Scholar 

  24. Hoppner C, Carle A, Sivanesan D, Hoeppner S, Baron C (2005) The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. Microbiology 151:3469–3482

    Article  PubMed  Google Scholar 

  25. Zupan J, Hackworth CA, Aguilar J, Ward D, Zambryski P (2007) VirB1* promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. J Bacteriol 189:6551–6563

    Article  CAS  PubMed  Google Scholar 

  26. Holtje JV (1996) Lytic transglycosylases. Exs 75:425–429

    CAS  PubMed  Google Scholar 

  27. Reid CW, Blackburn NT, Legaree BA, Auzanneau FI, Clarke AJ (2004) Inhibition of membrane-bound lytic transglycosylase B by NAG-thiazoline. FEBS Lett 574:73–79

    Article  CAS  PubMed  Google Scholar 

  28. Inohara N, Ogura Y, Nunez G (2002) Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr Opin Microbiol 5:76–80

    Article  CAS  PubMed  Google Scholar 

  29. Viala J, Chaput C, Boneca IG et al (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5:1166–1174

    Article  CAS  PubMed  Google Scholar 

  30. Liu X, Liang J, Li G (2009) Lipopolysaccharide promotes adhesion and invasion of hepatoma cell lines HepG2 and HepG2.2.15. Mol Biol Rep [Epub ahead of print]

Download references

Acknowledgments

We thank Prof. Seung-chul Baik (Gyeongsang National University College of Medicine, Republic of Korea) for kindly providing us the suicide plasmid pBlue-KM40 and technical assistant for mutant construct of H. pylori. This work was supported by grants from the National Natural Science Foundation of China (no. 30870096) and the Natural Science Foundation for college in Jiangsu Province (08KJB310001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihe Shao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1726 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Q., Shao, S., Mu, R. et al. Characterization of peptidoglycan hydrolase in Cag pathogenicity island of Helicobacter pylori . Mol Biol Rep 38, 503–509 (2011). https://doi.org/10.1007/s11033-010-0134-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0134-y

Keywords

Navigation