Skip to main content

Advertisement

Log in

Copy number variations of chromosome 17p13.1 might be linked to high risk of lung cancer in heavy smokers

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Lung cancer is the most common cause of cancer death worldwide. Smoking is known as the strongest single factor in the development of lung cancer. However, there are inherited genetic factors that cause different responses to cigarette smoking exposure among individuals. We tried to identify these differences in heavy smokers by examining copy number variations (CNVs) between lung cancer patients and healthy controls. Analysis by array comparative genomic hybridization which was tested with 20-person training set (10 lung cancer patients, 10 healthy controls) showed 26 significant (adjusted P < 0.05) clones with either copy number gains or losses. Three genes, KCTD11, FGF11, and PTPRH on chromosomal regions 17p13.1 (KCTD11 and FGF11) and 19q13.42 (PTPRH), were selected (adjusted P < 0.001) and tested by real-time quantitative PCR with 34 healthy controls and 54 lung cancer patients. KCTD11 on the chromosomal region 17p13.1 showed significant high odds ratio (OR = 16.0) in heavy smokers, implying that this is a susceptibility region for lung cancer in this group. Therefore, CNVs of 17p13.1 is a promising candidate to identify individuals with a high genetic risk for the development of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baik SH, Jee BK, Choi JS, Yoon HK, Lee KH, Kim YH, Lim Y (2009) DNA profiling by array comparative genomic hybridization (CGH) of peripheral blood mononuclear cells (PBMC) and tumor tissue cell in non-small cell lung cancer (NSCLC). Mol Biol Rep 36:1767–1778

    Article  PubMed  CAS  Google Scholar 

  2. Stav D, Bar I, Sandbank J (2008) Gene expression subtraction of non-cancerous lung from smokers and non-smokers with adenocarcinoma, as a predictor for smokers developing lung cancer. J Exp Clin Cancer Res 24:45–52

    Article  Google Scholar 

  3. Dave BJ, Hopwood VL, King TM, Jiang H, Spitz MR, Pathak S (1995) Genetic susceptibility to lung cancer as determined by lymphocytic chromosome analysis. Cancer Epidemiol Biomarkers Prev 4:743–749

    PubMed  CAS  Google Scholar 

  4. Burchard EG, Ziv E, Coyle N, Gomez SL, Tang H, Karter AJ, Mountain JL, Pérez-Stable EJ, Sheppard D, Risch N (2003) The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med 348:1170–1175

    Article  PubMed  Google Scholar 

  5. Armengol L, Villatoro S, González JR, Pantano L, García-Aragonés M, Rabionet R, Cáceres M, Estivill X (2009) Identification of copy number variants defining genomic differences among major human groups. PLoS One 4:e7230

    Article  PubMed  Google Scholar 

  6. Ayşegül B, Veysi GH, Muzaffer M, Irfan D, Azra A, Hulyam K (2010) Is a single nucleotide polymorphism a risk factor for lung cancer in the matrix metalloproteinase-2 promoter? Mol Biol Rep. doi:10.1007/s11033-010-0253-5

  7. Fanciulli M, Petretto E, Aitman TJ (2009) Gene copy number variation and common human disease. Clin Genet 77:201–213

    Article  PubMed  Google Scholar 

  8. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q et al (2008) Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 40:616–622

    Article  PubMed  CAS  Google Scholar 

  9. Wu C, Hu Z, Yu D, Huang L, Jin G, Liang J, Guo H, Tan W, Zhang M, Qian J, Lu D, Wu T, Lin D, Shen H (2009) Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. Cancer Res 69:5065–5072

    Article  PubMed  CAS  Google Scholar 

  10. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ et al (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307:1434–1440

    Article  PubMed  CAS  Google Scholar 

  11. Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, Kamesh L, Heward JM et al (2007) FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 39:721–723

    Article  PubMed  CAS  Google Scholar 

  12. McKinney C, Merriman ME, Chapman PT, Gow PJ, Harrison AA, Highton J, Jones PB, McLean L, O’Donnell JL, Pokorny V, Spellerberg M, Stamp LK, Willis J, Steer S, Merriman TR (2008) Evidence for an influence of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis. Ann Rheum Dis 67:409–413

    Article  PubMed  CAS  Google Scholar 

  13. Yang Y, Chung EK, Wu YL, Savelli SL, Nagaraja HN, Zhou B, Hebert M et al (2007) Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet 80:1037–1054

    Article  PubMed  CAS  Google Scholar 

  14. Brasch-Andersen C, Christiansen L, Tan Q, Haagerup A, Vestbo J, Kruse TA (2004) Possible gene dosage effect of glutathione-S-transferases on atopic asthma: using real-time PCR for quantification of GSTM1 and GSTT1 gene copy numbers. Hum Mutat 24:208–214

    Article  PubMed  CAS  Google Scholar 

  15. Ivaschenko TE, Sideleva OG, Baranov VS (2002) Glutathione-S-transferase micro and theta gene polymorphisms as new risk factors of atopic bronchial asthma. J Mol Med 80:39–43

    Article  PubMed  CAS  Google Scholar 

  16. Palmer CN, Doney AS, Lee SP, Murrie I, Ismail T, Macgregor DF, Mukhopadhyay S (2006) Glutathione S-transferase M1 and P1 genotype, passive smoking, and peak expiratory flow in asthma. Pediatrics 118:710–716

    Article  PubMed  Google Scholar 

  17. Piirilä P, Wikman H, Luukkonen R, Kääriä K, Rosenberg C, Nordman H, Norppa H, Vainio H, Hirvonen A (2001) Glutathione S-transferase genotypes and allergic responses to diisocyanate exposure. Pharmacogenetics 11:437–445

    Article  PubMed  Google Scholar 

  18. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B et al (2007) Strong association of de novo copy number mutations with autism. Science 316:445–449

    Article  PubMed  CAS  Google Scholar 

  19. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS et al (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–543

    Article  PubMed  CAS  Google Scholar 

  20. Ionita-Laza I, Rogers AJ, Lange C, Raby BA, Lee C (2009) Genetic association analysis of copy number variation (CNVs) in human disease pathogenesis. Genomics 93:22–26

    Article  PubMed  CAS  Google Scholar 

  21. Myung JK, Jeong JB, Han DH, Song CS, Moon HJ, Kim YA (2010) Well-differentiated liposarcoma of the oesophagus: clinicopathological, immunohistochemical and array CGH analysis. Pathol Oncol Res. doi:10.1007/s12253-010-9322-2

  22. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  23. Di Marcotullio L, Ferretti E, De Smaele E, Argenti B, Mincione C, Zazzeroni F, Gallo R, Masuelli L, Napolitano M, Maroder M, Modesti A, Giangaspero F, Screpanti I, Alesse E, Gulino A (2004) REN (KCTD11) is a suppressor of Hedgehog signaling and is detected in human medulloblastoma. Proc Natl Acad Sci USA 101:10833–10838

    Article  PubMed  CAS  Google Scholar 

  24. Katoh Y, Katoh M (2005) Comparative genomics on FGF11 orthologs. Oncol Rep 14:291–294

    PubMed  CAS  Google Scholar 

  25. Noguchi T, Tsuda M, Takeda H, Takada T, Inagaki K, Yamao T, Fukunaga K, Matozaki T, Kasuga M (2001) Inhibition of cell growth and spreading by stomach cancer-associated protein-tyrosine phosphate-1 (SAP-1) through dephosphorylation of p130cas. J Biol Chem 276:15216–15224

    Article  PubMed  CAS  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  27. Yim SH, Kim TM, Hu HJ, Kim JH, Kim BJ, Lee JY, Han BG, Shin SH, Jung SH, Chung YJ (2010) Copy number variations in East-Asian population and their evolutionary and functional implications. Hum Mol Genet 19:1001–1008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant (A084127) from the Korea Healthcare Technology R&D Project, Ministry of Health, Welfare & Family Affairs, Republic of Korea and, in part, by the Konyang University Myunggok Research Fund of 2010-06.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Woong Son or Jaeku Kang.

Additional information

Minhyeok Lee and Yeiwon Lee contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M., Lee, Y., Cho, HJ. et al. Copy number variations of chromosome 17p13.1 might be linked to high risk of lung cancer in heavy smokers. Mol Biol Rep 38, 5211–5217 (2011). https://doi.org/10.1007/s11033-010-0672-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0672-3

Keywords

Navigation