Skip to main content
Log in

Matrix metalloproteinas-9 functional promoter polymorphism 1562C>T increased risk of early-onset coronary artery disease

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The Matrix metalloproteinas-9 functional promoter polymorphism 1562C>T may be considered an important genetic determinant of early-onset coronary artery disease (ECAD). In this study, association between MMP-9 1562C>T allele with plasma MMP-9 activity, homocysteine and lipid–lipoproteins level and ECAD in Iranian subjects was investigated. This case–control study consisted of 53 ECAD patients (age < 55 years) and unrelated late-onsets CAD (age > 70 years) who angiographically had at least 50% stenosis. MMP-9 1562C>T polymorphism was detected by PCRRFLP, plasma MMP-9 activity, serum lipid and homocysteine levels were determined by gelatin gel zymography, enzyme assay and by HPLC, respectively. The presence of MMP-9 1562C>T allele was found to be associated with ECAD (OR = 3.2, P = 0.001). The ECAD patients with MMP-9 1562C>T allele had higher MMP-9 activity (P = 0.001), LDL-C (P = 0.045), TC (P = 0.02) and homocysteine (P = 0.01) levels than the LCAD subjects. MMP-9 1562C>T allele is a risk factor for ECAD. The carriers of this allele have high levels of MMP-9 activity, LDL-C, TC and homocysteine (P = 0.01), thus, are more likely to develop myocardial infarction and CAD at young age (less than 55 years).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kharrazi H, Vaisi Raygani A, Sabokroh AR, Pourmotabedd T (2006) Association between apolipoprotein E polymorphism in coronary artery disease patients in Kermanshah, in west of Iran. Clin Biochem 39:613–616

    Article  PubMed  CAS  Google Scholar 

  2. Vaisi-Raygani A, Tavilani H, Rahimi Z, Zahrai M, Sheikh N, Aminian M, Pourmotaabed T (2009) Serum butyrylcholinesterase activity and phenotype associations with lipid profile in stroke patients. Clin Biochem 42:210–214

    Article  PubMed  CAS  Google Scholar 

  3. Vaisi-Raygani A, Rahimi Z, Nomani H, Tavilani H, Pourmotaabed T (2007) The presence of apolipoprotein ε4 and ε2 alleles augments the risk of coronary artery disease in Type 2 diabetic patients. Clin Biochem 40:1150–1156b

    Article  PubMed  CAS  Google Scholar 

  4. Abilleira S, Bevan S, Markus HS (2006) The role of genetic variants of matrix metalloproteinases in coronary and carotid atherosclerosis. J Med Genet 43:897–901

    Article  PubMed  CAS  Google Scholar 

  5. Vaisi-Raygani A, Rahimi Z, Tavilani H, Pourmotaabed T (2010) Butyrylcholinesterase K variant and the APOE-e4 allele work in synergy to increase the risk of coronary artery disease especially in diabetic patients. Mol Biol Rep 37:2083–2091

    Article  PubMed  CAS  Google Scholar 

  6. Li Y, Sun DL, Duan YN, Zhang XJ, Wang N, Zhou RM, Chen ZF, Wang SJ (2010) Association of functional polymorphisms in MMPs genes with gastric cardia adenocarcinoma and esophageal squamous cell carcinoma in high incidence region of North China. Mol Biol Rep 37(1):197–205

    Article  PubMed  CAS  Google Scholar 

  7. Morgan AR, Zhang B, Tapper W, Collins A, Ye S (2003) Haplotypic analysis of the MMP-9 gene in relation to coronary artery disease. J Mol Med 81:321–326

    PubMed  CAS  Google Scholar 

  8. Rahimi Z, Vaisi-Raygani A, Pourmotaabed T (2011) Association between apolipoprotein ε4 allele, factor V Leiden, and plasma lipid and lipoprotein levels with sickle cell disease in Southern Iran. Mol Biol Rep 38(2):703–710

    Google Scholar 

  9. Zhi H, Wang H, Ren L, Shi Z, Peng H, Cui L, Ma G, Ye X, Feng Y, Shen C, Zhai X, Zhang C, Zen K, Liu N (2010) Functional polymorphisms of matrix metallopeptidase-9 and risk of coronary artery disease in a Chinese population. Mol Biol Rep 37(1):13–20

    Article  PubMed  CAS  Google Scholar 

  10. Rahimi Z, Felehgari V, Rahimi M, Mozafari H, Yari K, Vaisi-Raygani A, Rezaei M, Malek-Khosravi S, Khazaie H (2011) The frequency of factor V Leiden mutation, ACE gene polymorphism, serum ACE activity and response to ACE inhibitor and angiotensin II receptor antagonist drugs in Iranians type II diabetic patients with microalbuminuria. Mol Biol Rep 38(3):2117–2123

    Google Scholar 

  11. Kelly D, Cockerill G, Thompson M, Khan S, Samani NJ, Squire IB (2007) Plasma matrix metalloproteinase-9 and left ventricular remodelling after acute myocardial infarction in man: a prospective cohort study. Eur Heart J 28:711–718

    Article  PubMed  CAS  Google Scholar 

  12. Li H, Xu H, Liu S (1994) Toll-like receptors 4 induces expression of matrix metalloproteinase-9 in human aortic smooth muscle cells. Mol Biol Rep 38:1419–1423

    Article  Google Scholar 

  13. Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodelling. N Engl J Med 330:1431–1438

    Article  PubMed  CAS  Google Scholar 

  14. Ayşegül B, Veysi GH, Muzaffer M, Irfan D, Azra A, Hulyam K (2010) Is a single nucleotide polymorphism a risk factor for lung cancer in the matrix metalloproteinase-2 promoter? Mol Biol Rep 38:1469–1474

    Article  PubMed  Google Scholar 

  15. Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis. The good, the bad, and the ugly. Circ Res 90:251–262

    PubMed  CAS  Google Scholar 

  16. Nanni S, Melandri G, Hanemaaijer R, Cervi V, Tomasi L, Altimari A, Van Lent N, Tricoci P, Bacchi L, Branzi A (2007) Matrix metalloproteinases in premature coronary atherosclerosis: influence of inhibitors, inflammation, and genetic polymorphisms. Transl Res 149(3):137–144

    Article  PubMed  CAS  Google Scholar 

  17. Loftus IM, Naylor AR, Goodall S (2000) Increased matrix metalloproteinase-9 activity in unstable carotid plaques: a potential role in acute plaque disruption. Stroke 31:40–47

    Article  PubMed  CAS  Google Scholar 

  18. Zhang B, Ye S, Herrmann SM, Eriksson P, de Maat M, Evans A, Arveiler D, Luc G, Cambien F, Hamsten A, Watkins H, Henney AM (1999) Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 99:1788–1794

    PubMed  CAS  Google Scholar 

  19. Pollanen PJ, Karhunen PJ, Mikkelsson J (2001) Coronary artery complicated lesion area is related to functional polymorphism of matrix metalloproteinase 9 gene: an autopsy study. Arterioscler Thromb Vasc Biol 21:1446–1450

    Article  PubMed  CAS  Google Scholar 

  20. Zhang B, Henney A, Eriksson P, Hamsten A, Watkins H, Ye S (1999) Genetic variation at the matrix metalloproteinase-9 locus on chromosome 20q12.2-13.1. Hum Genet 105:418–423

    Article  PubMed  CAS  Google Scholar 

  21. Kai H, Ikeda H, Yasukawa H (1998) Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol 32:368–372

    Article  PubMed  CAS  Google Scholar 

  22. Kim H, Dalal S, Young E (2000) Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 106:857–866

    Article  PubMed  CAS  Google Scholar 

  23. Sambrook J, Russell DW (2001) Preparation and analysis of Eukaryotic genomic DNA. In: Argentine J, Irwin N (eds) Molecular cloning: a laboratory manual, vol 1. Cold spring Harbor Laboratory Press, Cold Spring Harbor (protocol 6.1)

  24. Kleiner D, Stetler-Stevenson W (1994) Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem 218:325–329

    Article  PubMed  CAS  Google Scholar 

  25. Cho A, Reidy MA (2002) Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res 91:845–851

    Article  PubMed  CAS  Google Scholar 

  26. Ferrand PE, Parry S, Sammel M (2002) A polymorphism in the matrix metalloproteinase-9 promoter is associated with increased risk of preterm premature rupture of membranes in Africans Americans. Mol Hum Reprod 8(5):494–501

    Article  PubMed  CAS  Google Scholar 

  27. Ubbink JB, Hayward Vermaak WJ, Bissbort S (1991) Rapid high-performance liquid chromatographic assay for total homocysteine levels in human serum. J Chromatogr 565:441–446

    Article  PubMed  CAS  Google Scholar 

  28. Vaisi-Raygani A, Rahimi Z, Entezami H, Kharrazi H, Bahrhemand F, Tavilani H, Rezaei M, Kiani A, Nomanpour B, Pourmotabbed T (2008) Butyrylcholinesterase K variants increase the risk of coronary artery disease in the population of western Iran. Scand J Clin Lab Invest 68(2):123–129

    Article  PubMed  CAS  Google Scholar 

  29. Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, Meyer J, Cambien F, Tiret L, AtheroGene Investigators (2003) Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 107:1579–1585

    Article  PubMed  CAS  Google Scholar 

  30. Medley TL, Cole TJ, Dart AM, Gatzka CD, Kingwell BA (2004) Matrix metallaproteinase-9 genotype influences large artery stiffness through effects on aortic gene and protein expression. Arterioscler Thromb Vasc Biol 24:1479–1484

    Article  PubMed  CAS  Google Scholar 

  31. Sundstrom J, Evans JC, Benjamin EJ, Levy D, Larson MG, Sawyer DB, Siwik DA, Colucci WS, Sutherland P, Wilson PWF, Vasan RS (2004) Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: the Framingham Heart Study. Circulation 109(23):2850–2856

    Article  PubMed  Google Scholar 

  32. Ranucci M, Ballotta A, Frigiola A, Boncilli A, Brozzi S, Costa E, Mehta RH (2009) Preoperative homocysteine levels and morbidity and mortality following cardiac surgery. Eur Heart J 30:995–1004

    Article  PubMed  CAS  Google Scholar 

  33. Pasali D, Marinkovi N, Grskovi B, Ferencak G, Bernat R, Stavljeni-Rukavina A (2009) C-reactive protein gene polymorphisms affect plasma CRP and homocysteine concentrations in subjects with and without angiographically confirmed coronary artery disease. Mol Biol Rep 36(4):775–780

    Article  Google Scholar 

  34. Madani H, Rahimi Z, Manavi-Shad M, Mozafari H, Akramipour R, Vaisi-Raygani A, Rezaei M, Malek-Khosravi S, Shakiba E, Parsian A (2011) Plasma lipids and lipoproteins in children and young adults with major β-thalassemia from western Iran: influence of genotype. Mol Biol Rep 38(4):2573–2578

    Google Scholar 

  35. Ashok Kumar M, Subhashini NG, SaiBabu R, Ramesh A, Cherian KM, Emmanuel C (2010) Genetic variants on apolipoprotein gene cluster influence triglycerides with a risk of coronary artery disease among Indians. Mol Biol Rep 37(1):521–527

    Article  CAS  Google Scholar 

  36. Liang S, Pan M, Geng HH, Chen H, Gu LQ, Qin XT, Qian JJ, Zhu JH, Liu CF (2009) Apolipoprotein E polymorphism in normal Han Chinese population: frequency and effect on lipid parameters. Mol Biol Rep 36(6):1251–1256

    Article  PubMed  CAS  Google Scholar 

  37. Robertson L, Grip L, Mattsson Hulte L, Hulthe J, Wiklund O (2007) Release of protein as well as activity of MMP-9 from unstable atherosclerotic plaques during percutaneous coronary intervention. J Internal Medici 262:659–667

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by Tehran University of Medical Sciences and Health Services. Grant no. 18898.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad Vaisi-Raygani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saedi, M., Vaisi-Raygani, A., Khaghani, S. et al. Matrix metalloproteinas-9 functional promoter polymorphism 1562C>T increased risk of early-onset coronary artery disease. Mol Biol Rep 39, 555–562 (2012). https://doi.org/10.1007/s11033-011-0770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0770-x

Keywords

Navigation