Skip to main content
Log in

Methylated promoters of genes encoding protocadherins as a new cancer biomarker family

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Protocadherins are a major subfamily of the cadherin superfamily. Their functions and intracellular signal transduction are poorly understood, although some have been explored in nervous system development. However, recent researches have shown that protocadherins frequently act as tumor suppressor genes (TSGs) and inactivation of these genes through promoter methylation is closely correlated with tumor development. Furthermore, these methylated protocadherins may serve as tumor biomarkers in various body fluids, stool and scrapings not only for early cancer diagnosis, but also for assessing prognosis and monitoring response to therapy. Thus, methylated promoters of genes encoding protocadherins show promise as a new cancer biomarker family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

TSGs:

Tumor suppressor genes

PCDHs:

Protocadherins

PCDH-γ-A11:

Protocadherin-γ subfamily A11

NPC:

Nasopharyngeal carcinoma

HL:

Hodgkin lymphoma

GC:

Gastric cancer

PAPC:

Paraxial protocadherinNSCLC non–small-cell lung cancer

NSCLC:

Non-small-cell lung cancer

ESCC:

Esophageal squamous-cell carcinoma

5-ASA:

5-aminosalicylic acid

References

  1. Suzuki ST (1996) Protocadherins diversity of the cadherin superfamily. J Cell Sci 109:2609–2611

    PubMed  CAS  Google Scholar 

  2. Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299:551–572

    PubMed  CAS  Google Scholar 

  3. Stemmler MP (2008) Cadherins in development and cancer. Mol Biosyst 4:835–850

    PubMed  CAS  Google Scholar 

  4. Qiao X, Zhang L, Gamper AM, Fujita T, Wan Y (2010) APC/C-Cdh1: from cell cycle to cellular differentiation and genomic integrity. Cell Cycle 9:3904–3912

    PubMed  CAS  Google Scholar 

  5. Wäsch R, Robbins JA, Cross FR (2010) The emerging role of APC/CCdh1 in controlling differentiation, genomic stability and tumor suppression. Oncogene 29:1–10

    PubMed  Google Scholar 

  6. Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, Qiu R, Pinnix CC, Li X, Herlyn M (2006) Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 66:4182–4190

    PubMed  CAS  Google Scholar 

  7. Li K, He W, Lin N, Wang X, Fan QX (2010) Downregulation of N-cadherin expression inhibits invasiveness, arrests cell cycle and induces cell apoptosis in esophageal squamous cell carcinoma. Cancer Invest 28:479–486

    PubMed  CAS  Google Scholar 

  8. Stan A, Pielarski KN, Brigadski T, Wittenmayer N, Fedorchenko O, Gohla A, Lessmann V, Dresbach T, Gottmann K (2010) Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proc Natl Acad Sci U S A 107:11116–11121

    PubMed  CAS  Google Scholar 

  9. Li H, Daculsi R, Grellier M, Bareille R, Bourget C, Amedee J (2010) Role of neural-cadherin in early osteoblastic differentiation of human bone marrow stromal cells cocultured with human umbilical vein endothelial cells. Am J Physiol Cell Physiol 299:C422–C430

    PubMed  CAS  Google Scholar 

  10. Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yokomine K, Harao M, Inoue M, Tsunoda T, Nakatsuru S, Nakagawa H, Nakamura Y, Baba H, Nishimura Y (2008) Identification of a novel tumor-associated antigen, cadherin 3/P-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clin Cancer Res 14:6487–6495

    PubMed  CAS  Google Scholar 

  11. Babb SG, Kotradi SM, Shah B, Chiappini-Williamson C, Bell LN, Schmeiser G, Chen E, Liu Q, Marrs JA (2005) Zebrafish R-cadherin (Cdh4) controls visual system development and differentiation. Dev Dyn 233:930–945

    PubMed  CAS  Google Scholar 

  12. Miotto E, Sabbioni S, Veronese A, Calin GA, Gullini S, Liboni A, Gramantieri L, Bolondi L, Ferrazzi E, Gafà R, Lanza G, Negrini M (2004) Frequent aberrant methylation of the CDH4 gene promoter in human colorectal and gastric cancer. Cancer Res 64:8156–8159

    PubMed  CAS  Google Scholar 

  13. Fujita T, Igarashi J, Okawa ER, Gotoh T, Manne J, Kolla V, Kim J, Zhao H, Pawel BR, London WB, Maris JM, White PS, Brodeur GM (2008) CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas. J Natl Cancer Inst 100:940–949

    PubMed  CAS  Google Scholar 

  14. Liu Q, Londraville R, Marrs JA, Wilson AL, Mbimba T, Murakami T, Kubota F, Zheng W, Fatkins DG (2008) Cadherin-6 function in zebrafish retinal development. Dev Neurobiol 68:1107–1122

    PubMed  CAS  Google Scholar 

  15. Di Benedetto A, Watkins M, Grimston S, Salazar V, Donsante C, Mbalaviele G, Radice GL, Civitelli R (2010) N-cadherin and cadherin 11 modulate postnatal bone growth and osteoblast differentiation by distinct mechanisms. J Cell Sci 123:2640–2648

    PubMed  CAS  Google Scholar 

  16. Clendenon SG, Shah B, Miller CA, Schmeisser G, Walter A, Gattone VH II, Barald KF, Liu Q, Marrs JA (2009) Cadherin-11 controls otolith assembly: evidence for extracellular cadherin activity. Dev Dyn 238:1909–1922

    PubMed  CAS  Google Scholar 

  17. Marchong MN, Yurkowski C, Ma C, Spencer C, Pajovic S, Gallie BL (2010) Cdh11 acts as a tumor suppressor in a murine retinoblastoma model by facilitating tumor cell death. PLoS Genet 6:e1000923

    PubMed  Google Scholar 

  18. Andreeva AV, Kutuzov MA (2010) Cadherin 13 in cancer. Genes Chromosomes Cancer 49:775–790

    PubMed  CAS  Google Scholar 

  19. Org E, Eyheramendy S, Juhanson P, Gieger C, Lichtner P, Klopp N, Veldre G, Döring A, Viigimaa M, Sõber S, Tomberg K, Eckstein G; KORA, Kelgo P, Rebane T, Shaw-Hawkins S, Howard P, Onipinla A, Dobson RJ, Newhouse SJ, Brown M, Dominiczak A, Connell J, Samani N, Farrall M; BRIGHT, Caulfield MJ, Munroe PB, Illig T, Wichmann HE, Meitinger T, Laan M. (2009) Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet 18:2288–2296

  20. Lin C, Meng S, Zhu T, Wang X (2010) PDCD10/CCM3 acts downstream of gamma-protocadherins to regulate neuronal survival. J Biol Chem 285:41675–41685

    PubMed  CAS  Google Scholar 

  21. Hirano S, Suzuki ST, Redies C (2003) The cadherin superfamily in neural development: diversity, function and interaction with other molecules. Front Biosci 8:d306–d355

    PubMed  CAS  Google Scholar 

  22. Takeichi M (2007) The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 8:11–20

    PubMed  CAS  Google Scholar 

  23. Sano K, Tanihara H, Heimark RL, Obata S, Davidson M, St John T, Taketani S, Suzuki S (1993) Protocadherins: a large family of cadherin-related molecules in central nervous system. EMBO J 12:2249–2256

    PubMed  CAS  Google Scholar 

  24. Suzuki ST (2000) Recent progress in protocadherin research. Exp Cell Res 261:13–18

    PubMed  CAS  Google Scholar 

  25. Frank M, Kemler R (2002) Protocadherins. Curr Opin Cell Biol 14:557–562

    PubMed  CAS  Google Scholar 

  26. Morishita H, Yagi T (2007) Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol 19:584–592

    PubMed  CAS  Google Scholar 

  27. Hulpiau P, van Roy F (2009) Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 41:349–369

    PubMed  CAS  Google Scholar 

  28. Ribich S, Tasic B, Maniatis T (2006) Identification of long-range regulatory elements in the protocadherin-alpha gene cluster. Proc Natl Acad Sci U S A 103:19719–19724

    PubMed  CAS  Google Scholar 

  29. Yu WP, Rajasegaran V, Yew K, Loh WL, Tay BH, Amemiya CT, Brenner S, Venkatesh B (2008) Elephant shark sequence reveals unique insights into the evolutionary history of vertebrate genes: a comparative analysis of the protocadherin cluster. Proc Natl Acad Sci U S A 105:3819–3824

    PubMed  CAS  Google Scholar 

  30. Redies C, Vanhalst K, Roy F (2005) δ-Protocadherins: unique structures and functions. Cell Mol Life Sci 62:2840–2852

    PubMed  CAS  Google Scholar 

  31. Momparler RL (2003) Cancer epigenetics. Oncogene 22:6479–6483

    PubMed  CAS  Google Scholar 

  32. Zhang XM, Li QM, Su DJ, Wang N, Shan ZY, Jin LH, Lei L (2010) RA induces the neural-like cells generated from epigenetic modified NIH/3T3 cells. Mol Biol Rep 37:1197–1202

    PubMed  CAS  Google Scholar 

  33. Xiao L, Wang Y, Zhou Y, Sun Y, Sun W, Wang L, Zhou C, Zhou J, Zhang J (2010) Identification of a novel human cancer/testis gene MAEL that is regulated by DNA methylation. Mol Biol Rep 37:2355–2360

    PubMed  CAS  Google Scholar 

  34. Drzewinska J, Walczak-Drzewiecka A, Ratajewski M (2011) Identification and analysis of the promoter region of the human DHCR24 gene: involvement of DNA methylation and histone acetylation. Mol Biol Rep 38:1091–1101

    PubMed  CAS  Google Scholar 

  35. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    PubMed  CAS  Google Scholar 

  36. Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S (1995) Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci U S A 92:7416–7419

    PubMed  CAS  Google Scholar 

  37. Wu Q, Zhang T, Cheng JF, Kim Y, Grimwood J, Schmutz J, Dickson M, Noonan JP, Zhang MQ, Myers RM, Maniatis T (2001) Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res 11:389–404

    PubMed  CAS  Google Scholar 

  38. Kawaguchi M, Toyama T, Kaneko R, Hirayama T, Kawamura Y, Yagi T (2008) Relationship between DNA methylation states and transcription of individual isoforms encoded by the protocadherin-α gene cluster. J Biol Chem 283:12064–12075

    PubMed  CAS  Google Scholar 

  39. Kaneko R, Kawaguchi M, Toyama T, Taguchi Y, Yagi T (2009) Expression levels of Protocadherin-α transcripts are decreased by nonsense-mediated mRNA decay with frameshift mutations and by high DNA methylation in their promoter regions. Gene 430:86–94

    PubMed  CAS  Google Scholar 

  40. Novak P, Jensen T, Oshiro MM, Watts GS, Kim CJ, Futscher BW (2008) Agglomerative epigenetic aberrations are a common event in human breast cancer. Cancer Res 68:8616–8625

    PubMed  CAS  Google Scholar 

  41. Dallosso AR, Hancock AL, Szemes M, Moorwood K, Chilukamarri L, Tsai HH, Sarkar A, Barasch J, Vuononvirta R, Jones C, Pritchard-Jones K, Royer-Pokora B, Lee SB, Owen C, Malik S, Feng Y, Frank M, Ward A, Brown KW, Malik K (2009) Frequent long-range epigenetic silencing of protocadherin gene clusters on chromosome 5q31 in Wilms’ tumor. PLoS Genet 5:e1000745

    PubMed  Google Scholar 

  42. de Freitas Cordeiro-Silva M, Oliveira ZF, de Podestá JR, Gouvea SA, Von Zeidler SV, Louro ID (2011) Methylation analysis of cancer-related genes in non-neoplastic cells from patients with oral squamous cell carcinoma. Mol Biol Rep. doi:10.1007/s11033-011-0698-1

  43. Qureshi SA, Bashir MU, Yaqinuddin A (2010) Utility of DNA methylation markers for diagnosing cancer. Int J Surg 8:194–198

    PubMed  Google Scholar 

  44. Duffy MJ, Napieralski R, Martens JW, Span PN, Spyratos F, Sweep FC, Brunner N, Foekens JA, Schmitt M (2009) EORTC PathoBiology group. Methylated genes as new cancer biomarkers. Eur J Cancer 45:335–346

    PubMed  CAS  Google Scholar 

  45. Waha A, Güntner S, Huang TH, Yan PS, Arslan B, Pietsch T, Wiestler OD, Waha A (2005) Epigenetic silencing of the protocadherin family member PCDH-gamma-A11 in astrocytomas. Neoplasia 7:193–199

    PubMed  CAS  Google Scholar 

  46. Jiang Z, Zhou W, Li XG, Jiang YQ, Wang L, Wang DH, Wang XY, Li XE (2010) The methylation analysis of EMP3 and PCDH-gamma-A11 gene in human glioma. Zhonghua Wai Ke Za Zhi 48:300–304

    PubMed  Google Scholar 

  47. Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW, Putti T, Murray P, Chan AT, Tao Q (2006) Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene 25:1070–1080

    PubMed  CAS  Google Scholar 

  48. Cheung HH, Lee TL, Davis AJ, Taft DH, Rennert OM, Chan WY (2010) Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer. Br J Cancer 102:419–427

    PubMed  CAS  Google Scholar 

  49. Ying J, Gao Z, Li H, Srivastava G, Murray PG, Goh HK, Lim CY, Wang Y, Marafioti T, Mason DY, Ambinder RF, Chan AT, Tao Q (2007) Frequent epigenetic silencing of protocadherin 10 by methylation in multiple haematologic malignancies. Br J Haematol 136:829–832

    PubMed  CAS  Google Scholar 

  50. Narayan G, Scotto L, Neelakantan V, Kottoor SH, Wong AH, Loke SL, Mansukhani M, Pothuri B, Wright JD, Kaufmann AM, Schneider A, Arias-Pulido H, Tao Q, Murty VV (2009) Protocadherin PCDH10, involved in tumor progression, is a frequent and early target of promoter hypermethylation in cervical cancer. Genes Chromosomes Cancer 48:983–992

    PubMed  CAS  Google Scholar 

  51. Wang KH, Liu HW, Lin SR, Ding DC, Chu TY (2009) Field methylation silencing of the protocadherin 10 gene in cervical carcinogenesis as a potential specific diagnostic test from cervical scrapings. Cancer Sci 100:2175–2180

    PubMed  CAS  Google Scholar 

  52. Lin CJ, Lai HC, Wang KH, Hsiung CA, Liu HW, Ding DC, Hsieh CY, Chu TY (2011) Testing for methylated PCDH10 or WT1 is superior to the HPV test in detecting severe neoplasms (CIN3 or greater) in the triage of ASC-US smear results. Am J Obstet Gynecol 204:e1–e21

    Google Scholar 

  53. Yu J, Cheng YY, Tao Q, Cheung KF, Lam CN, Geng H, Tian LW, Wong YP, Tong JH, Ying JM, Jin H, To KF, Chan FK, Sung JJ (2009) Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology 136:640–651

    PubMed  CAS  Google Scholar 

  54. Yu JS, Koujak S, Nagase S, Li CM, Su T, Wang X, Keniry M, Memeo L, Rojtman A, Mansukhani M, Hibshoosh H, Tycko B, Parsons R (2008) PCDH8, the human homolog of PAPC, is a candidate tumor suppressor of breast cancer. Oncogene 27:4657–4665

    PubMed  CAS  Google Scholar 

  55. Leshchenko VV, Kuo PY, Shaknovich R, Yang DT, Gellen T, Petrich A, Yu Y, Remache Y, Weniger MA, Rafiq S, Suh KS, Goy A, Wilson W, Verma A, Braunschweig I, Muthusamy N, Kahl BS, Byrd JC, Wiestner A, Melnick A, Parekh S (2010) Genomewide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma. Blood 116:1025–1034

    PubMed  CAS  Google Scholar 

  56. Morris MR, Ricketts CJ, Gentle D, McRonald F, Carli N, Khalili H, Brown M, Kishida T, Yao M, Banks RE, Clarke N, Latif F, Maher ER (2011) Genome-wide methylation analysis identifies epigenetically inactivated candidate tumor suppressor genes in renal cell carcinoma. Oncogene 30:1390–1401

    PubMed  CAS  Google Scholar 

  57. Imoto I, Izumi H, Yokoi S, Hosoda H, Shibata T, Hosoda F, Ohki M, Hirohashi S, Inazawa J (2006) Frequent silencing of the candidate tumor suppressor PCDH20 by epigenetic mechanism in non-small-cell lung cancers. Cancer Res 66:4617–4626

    PubMed  CAS  Google Scholar 

  58. Model F, Osborn N, Ahlquist D, Gruetzmann R, Molnar B, Sipos F, Galamb O, Pilarsky C, Saeger HD, Tulassay Z, Hale K, Mooney S, Lograsso J, Adorjan P, Lesche R, Dessauer A, Kleiber J, Porstmann B, Sledziewski A, Lofton-Day C (2007) Identification and validation of colorectal neoplasia-specific methylation markers for accurate classification of disease. Mol Cancer Res 5:153–163

    PubMed  CAS  Google Scholar 

  59. Haruki S, Imoto I, Kozaki K, Matsui T, Kawachi H, Komatsu S, Muramatsu T, Shimada Y, Kawano T, Inazawa J (2010) Frequent silencing of protocadherin 17, a candidate tumor suppressor for esophageal squamous cell carcinoma. Carcinogenesis 31:1027–1036

    PubMed  CAS  Google Scholar 

  60. Okazaki N, Takahashi N, Kojima S, Masuho Y, Koga H (2002) Protocadherin LKC, a new candidate for a tumor suppressor of colon and liver cancers, its association with contact inhibition of cell proliferation. Carcinogenesis 23:1139–1148

    PubMed  CAS  Google Scholar 

  61. Yang LY, Wang W, Peng JX, Yang JQ, Huang GW (2004) Differentially expressed genes between solitary large hepatocellular carcinoma and nodular hepatocellular carcinoma. World J Gastroenterol 10:3569–3573

    PubMed  CAS  Google Scholar 

  62. Parenti S, Ferrarini F, Zini R, Montanari M, Losi L, Canovi B, Ferrari S, Grande A (2010) Mesalazine inhibits the beta-catenin signalling pathway acting through the upregulation of μ-protocadherin gene in colo-rectal cancer cells. Aliment Pharmacol Ther 31:108–119

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the grants from National Natural Science Foundation of China (grant No. 30770920 and 81071651) and Zhejiang Provincial Natural Science Foundation of China (grant No. R2100213, 2009C33142, Z2090056 and WKJ2009-2-028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao He or Xiaotong Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sui, X., Wang, D., Geng, S. et al. Methylated promoters of genes encoding protocadherins as a new cancer biomarker family. Mol Biol Rep 39, 1105–1111 (2012). https://doi.org/10.1007/s11033-011-0837-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0837-8

Keywords

Navigation