Skip to main content

Advertisement

Log in

Quantification of serum HBXAP DNA in lung cancer patients by quantitative fluorescent polymerase chain reaction

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Hepatitis B virus x associated protein (HBXAP), as a subunit of chromatin remodeling and spacing factor, plays a critical role in cancer development through gene amplification. In this study, we aimed to quantify the levels of serum HBXAP DNA, to analyze and compare its diagnostic value with existing clinical parameters in lung cancer, and to potentially provide a novel tumor marker for lung cancer. Serum HBXAP DNA from 65 lung cancer patients and 20 healthy controls was quantified using real-time fluorescent quantitative polymerase chain reaction (FQ-PCR) analysis. The data were analyzed by statistical software SPSS 13.0. We found that serum HBXAP DNA levels in lung cancer patients were higher compared to healthy controls (u = 219.0, p = 0.001) and were closely associated with TNM stage and lymph node metastasis (p = 0.015 and p = 0.016, respectively). However, serum HBXAP DNA levels were not associated with patient age, gender, smoking status, histological type, or tumor size (p > 0.05). We identified a sensitivity of 61.9 % and a specificity of 93.7 % for the ability of HBXAP DNA levels to detect lung cancer at a cutoff value of 1,557.6 copies/μl. The sensitivity for existing lung-tumor markers, such as squamous cell carcinoma antigen, cytokeratin fragment 21-1, and neuron specific enolase, was increased from 35.7 %, 53.5 %, and 56.0 % to 75.0 %, 86.0 %, and 80.0 %, respectively, by inclusion of serum HBXAP DNA. Taken together, quantification of serum HBXAP DNA by FQ-PCR could potentially serve as a novel complementary tool for the clinical screening and detection of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vogelstein B, Kinzler KW (2002) The genetic basis of human cancer, 2nd edn. McGraw-Hill, Toronto Health Professions Division (New York)

    Google Scholar 

  2. Davidson B, Trope CG, Wang TL, Shile M (2006) Expression of the chromatin remodeling factor Rsf-1 is upregulated in ovarian carcinoma effusions and predicts poor survival. Gynecol Oncol 103:814–819

    Article  PubMed  CAS  Google Scholar 

  3. Mao TL, Hsu CY, Yen MJ, Giks B, Sheu JJ, Gabrielson R, Vang L, Cope RG, Kurman TL, Wang M (2006) Expression of Rsf-1, a chromatin-remodeling gene, in ovarian and breast carcinoma. Hum Pathol 37:1169–1175

    Article  PubMed  CAS  Google Scholar 

  4. Li Q, Dong Q, Wang E (2012) Rsf-1 is overexpressed in non-small cell lung cancers and regulates cyclinD1 expression and ERK activity. Biochem Biophys Res Commun 420:6–10

    Article  PubMed  CAS  Google Scholar 

  5. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650

    PubMed  CAS  Google Scholar 

  6. Goebel G, Zitt M, Müller HM (2005) Circulating nucleic acids in plasma or serum (CNAPS) as prognostic and predictive markers in patients with solid neoplasias. Dis Markers 21:105–120

    PubMed  CAS  Google Scholar 

  7. Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer-A survey. Biochim Biophys Acta 1775:181–232

    PubMed  CAS  Google Scholar 

  8. Dobrzycka B, Terlikowski SJ, Mazurek A, Kowalczuk O, Niklinska W, Chyczewski L, Kulikowski M (2010) Circulating free DNA, p53 antibody and mutations of K-ras gene in endometrial cancer. Int J Cancer 127:612–621

    Article  PubMed  CAS  Google Scholar 

  9. Lofton DC, Model F, DeVos T, Tetzner R, Distler J, Schuster M, Song X, Lesche R, Liebenberg V, Ebert M, Molnar B, Grützmann R, Pilarsky C, Sledziewski A (2008) DNA methylation biomarkers for blood based colorectal cancer screening. Clin Chem 54:414–423

    Article  Google Scholar 

  10. Nakamoto D, Yamamoto N, Takagi R, Katakura A, Mizoe JE, Shibahara T (2008) Detection of microsatellite alterations in plasma DNA of malignant mucosal melanoma using genome amplification. Bull Tokyo Dent Coll 49:77–87

    Article  PubMed  CAS  Google Scholar 

  11. Yang YJ, Chen H, Huang P, Li CH, Dong ZH, Hou YL (2011) Quantification of plasma hTERT DNA in hepatocellular carcinoma patients by quantitative fluorescent polymerase chain reaction. Clin Invest Med 34:238–244

    Google Scholar 

  12. Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 30:503–512

    Article  PubMed  CAS  Google Scholar 

  13. Travis WD, Brambilla E, Mueller-Hermelink HK, Harris CC (2004) World health organization classification tumors of the lung, pleura, thymus and heart. IARC Press, Lyon, pp 10–20

    Google Scholar 

  14. Shih IM, Sheu JJ, Santillan A, Nakayama K, Yen RE, Bristow R, Vang R, Parmigiani G, Kurman RJ, Trope CG, Davidson B, Wang TL (2005) Amplification of chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma. Proc Natl Acad Sci USA 102:14004–14009

    Article  PubMed  CAS  Google Scholar 

  15. Tai HC, Huang HY, Lee SW, Lin CY, Sheu MJ, Chang SL, Wu LC, Shiue YL, Wu WR, Lin CM, Li CF (2012) Association of Rsf-1 overexpression with poor therapeutic response and worse survival in patients with nasopharyngeal carcinoma. J Clin Pathol 65:248–253

    Article  PubMed  Google Scholar 

  16. Chen TJ, Huang SC, Huang HY, Wei YC, Li CF (2011) Rsf-1/HBXAP overexpression is associated with disease-specific survival of patients with gallbladder carcinoma. APMIS 119:808–814

    Article  PubMed  Google Scholar 

  17. Fang FM, Li CF, Huang HY, Lai MT, Chen CM, Chiu IW, Wang TL, Tsai FJ, Shih IM , Sheu JJ (2011) Overexpression of a chromatin remodeling factor, RSF-1/HBXAP, correlated with aggressive oral squamous cell carcinoma. Am J Pathol 178:2407–2415

  18. Shibata T, Uryu S, Kokubu A, Hosoda F, Ohki M, Sakiyama T, Mastuno Y, Tsuchiya R, Kanai Y, Kondo T, Imoto I, Inazawa J, Hirohashi S (2005) Genetic classification of lung adenocarcinoma based on array-based comparative genomic hybridization analysis: its association with clinicopathologic features. Clin Cancer Res 11:6177–6185

    Article  PubMed  CAS  Google Scholar 

  19. Loyola A, Huang JY, LeRoy G, Hu S, Wang YH, Donnelly RJ, Lane WS, Lee SC, Reinberg D (2003) Functional analysis of the subunits of the chromatin assembly factor RSF-1. Mol Cell Biol 23:6459–6468

    Article  Google Scholar 

  20. Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 20:1899–1910

    Article  PubMed  CAS  Google Scholar 

  21. Flanagan JF, Peterson CL (1999) A role for the yeast SWI/SNF complex in DNA replication. Nucleic Acids Res 97:299–311

    Google Scholar 

  22. Cosma MP, Tanaka T, Nasmyth K (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle and developmentally regulated promoter. Cell 97:299–311

    Article  PubMed  CAS  Google Scholar 

  23. Daichi M, Chen X, Guan B, Nakagawa S, Yano T, Taketain YJ, Fukayama M, Wang TL, Shih LM (2011) Rsf-1(HBXAP) expression is associated with advanced stage and lymph node metastasis in ovarian clear cell carcinoma. Int J Gynecol Pathol 30:30–35

    Article  Google Scholar 

  24. Catarino R, Ferreira MM, Rodrigues H, Coelho A, Nogal A, Sousa A, Medeiros R (2008) Quantification of free circulating tumor DNA as a diagnostic marker for breast cancer. DNA Cell Biol 27:415–421

    Article  PubMed  CAS  Google Scholar 

  25. Shi GL, Hu XL, Yu SD, Song CX (2005) The value of serum tumor marker in the diagnosis of lung cancer. Chin J Oncol 27:299–301

    CAS  Google Scholar 

  26. Sai S, Ichikawa D, Tomita H, Ikoma D, Tani N, Ikoma H, Kikuchi S, Fujiwara H, Ueda Y, Otsuji E (2007) Quantification of plasma cell-free DNA in patients with gastric cancer. Anticancer Res 27:2747–2752

    PubMed  CAS  Google Scholar 

  27. Schwarzenbach H, Alix-Panabières C, Müller L, Letang N, Vendrell JP, Rebillard X, Pantel K (2009) Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res 15:1032–1038

    Article  PubMed  CAS  Google Scholar 

  28. Paci M, Maramotti S, Bellesia E, Formisano D, Albertazzi L, Ricchetti T, Ferrari G, Annessi V, Lasagni D, Carbonelli C, Franco SD, Brini M, Sgarbi G, Lodi R (2009) Circulating plasma DNA as diagnostic biomarker in non-small cell lung cancer. Lung Cancer 64:92–97

    Article  PubMed  Google Scholar 

  29. Ellinger J, Wittkamp V, Albers P, Perabo FE, Mueller SC, Ruecker AV, Bastian PJ (2009) Cell-Free circulating DNA: diagnostic value in patients with testicular germ cell cancer. J Urol 181:363–371

    Article  PubMed  CAS  Google Scholar 

  30. Zhong XY, Ladewig A, Schmid S, Wight E, Hahn S, Holzgreve W (2007) Elevated level of cell-free plasma DNA is associated with breast cancer. Arch Gynecol Obstet 276:327–331

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Medical Scientific Program of Chongqing Municipal Health Bureau (Grant No. 2012-2-016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, YL., Chen, H., Ge, MJ. et al. Quantification of serum HBXAP DNA in lung cancer patients by quantitative fluorescent polymerase chain reaction. Mol Biol Rep 40, 4091–4096 (2013). https://doi.org/10.1007/s11033-013-2488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2488-4

Keywords

Navigation