Skip to main content

Advertisement

Log in

Influence of survivin (BIRC5) and caspase-9 (CASP9) functional polymorphisms in renal cell carcinoma development: a study in a southern European population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Renal cell carcinoma (RCC) is the most common cancer of the adult kidney and its incidence and mortality has increase in the last 20 years. The disruption of cellular death is one the mechanism involved in cancer development. This process is precise regulated by apoptotic and anti-apoptotic molecules. Survivin (BIRC5) is a member of the inhibitor of apoptosis protein family and has the ability to inhibit the activation of the pro-apoptotic caspase-9 (CASP9). Thus BIRC5 and CASP9 functional polymorphisms might modulate the apoptosis and consequently RCC development. Our purpose was to investigate the potential role of BIRC531G/C and CASP9+83C/T functional polymorphisms in the risk for the development of RCC and metastatic disease. We studied the BIRC531G/C and CASP9+83C/T functional polymorphisms by PCR–RFLP and allelic discrimination using the 7300 real-time polymerase chain reaction system, respectively, in 178 RCC patients and in 305 healthy individuals. Regarding the BIRC531G/C polymorphism, there is a trend to an overrepresentation of CC genotype in RCC group compared with normal controls (aOR, 1.94; P = 0.053). We observed, after gender stratification and age-adjustment, that BIRC531CC and CASP9+83CT/TT genotypes were associated with an increased risk for RCC development in the female group of our southern European study population (aOR = 3.85; P = 0.019; aOR = 2.98; P = 0.028; respectively). Concerning the waiting time for onset of metastatic disease, we observed that BIRC531CC homozygous developed metastasis 8 years earlier than the G carriers using a Cox proportional hazard model with gender as covariate (HR = 4.9, P = 0.038, P bootstrap = 0.009). The Cox regression proportional hazard model was validated using bootstrap statistic with 1,000 samples of the same number of patients as the original dataset. Our results suggest that individual differences influence the susceptibility to RCC and tumor behavior. This genetic profile may help to define higher risk groups that would benefit from individualized chemoprevention strategies and therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Lindblad P (2004) Epidemiology of renal cell carcinoma. Scand J Surg 93:88–96

    PubMed  CAS  Google Scholar 

  3. Linehan WM, Pinto PA, Srinivasan R et al (2007) Identification of the genes for kidney cancer: opportunity for disease-specific targeted therapeutics. Clin Cancer Res 13:671s–679s

    Article  PubMed  CAS  Google Scholar 

  4. Parker AS, Kosari F, Lohse CM et al (2006) High expression levels of survivin protein independently predict a poor outcome for patients who undergo surgery for clear cell renal cell carcinoma. Cancer 107:37–45

    Article  PubMed  CAS  Google Scholar 

  5. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  PubMed  CAS  Google Scholar 

  6. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    Article  PubMed  CAS  Google Scholar 

  7. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3:401–410

    Article  PubMed  CAS  Google Scholar 

  8. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    Article  PubMed  CAS  Google Scholar 

  9. Altieri DC (2003) Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22:8581–8589

    Article  PubMed  CAS  Google Scholar 

  10. Xu Y, Fang F, Ludewig G et al (2004) A mutation found in the promoter region of the human survivin gene is correlated to overexpression of survivin in cancer cells. DNA Cell Biol 23:527–537

    PubMed  CAS  Google Scholar 

  11. Gazouli M, Tzanakis N, Rallis G et al (2009) Survivin −31G/C promoter polymorphism and sporadic colorectal cancer. Int J Colorectal Dis 24:145–150

    Article  PubMed  Google Scholar 

  12. Qin C, Cao Q, Li P et al (2012) Functional promoter −31G>C variant in survivin gene is associated with risk and progression of renal cell cancer in a Chinese population. PLoS One 7:e28829

    Article  PubMed  CAS  Google Scholar 

  13. Abel F, Sjoberg RM, Ejeskar K et al (2002) Analyses of apoptotic regulators CASP9 and DFFA at 1P36.2, reveal rare allele variants in human neuroblastoma tumours. Br J Cancer 86:596–604

    Article  PubMed  CAS  Google Scholar 

  14. Chowdhury I, Tharakan B, Bhat GK (2008) Caspases: an update. Comp Biochem Physiol B Biochem Mol Biol 151:10–27

    Article  PubMed  Google Scholar 

  15. Shiozaki EN, Chai J, Shi Y (2002) Oligomerization and activation of caspase-9, induced by Apaf-1 CARD. Proc Natl Acad Sci USA 99:4197–4202

    Article  PubMed  CAS  Google Scholar 

  16. Ceruti S, Mazzola A, Abbracchio MP (2005) Resistance of human astrocytoma cells to apoptosis induced by mitochondria-damaging agents: possible implications for anticancer therapy. J Pharmacol Exp Ther 314:825–837

    Article  PubMed  CAS  Google Scholar 

  17. Yang L, Zhu H, Zhou B et al (2009) The association between the survivin C-31G polymorphism and gastric cancer risk in a Chinese population. Dig Dis Sci 54:1021–1028

    Article  PubMed  CAS  Google Scholar 

  18. Medeiros R, Vasconcelos A, Costa S et al (2003) Steroid hormone genotypes ARStul and ER325 are linked to the progression of human prostate cancer. Cancer Genet Cytogenet 141:91–96

    Article  PubMed  CAS  Google Scholar 

  19. Schafer ZT, Parrish AB, Wright KM et al (2006) Enhanced sensitivity to cytochrome c-induced apoptosis mediated by PHAPI in breast cancer cells. Cancer Res 66:2210–2218

    Article  PubMed  CAS  Google Scholar 

  20. Martinelli S, Kostylina G, Niggli V et al (2006) Targeting survivin via PI3K but not c-akt/PKB by anticancer drugs in immature neutrophils. Oncogene 25:6915–6923

    Article  PubMed  CAS  Google Scholar 

  21. Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8:61–70

    Article  PubMed  CAS  Google Scholar 

  22. Borbely AA, Murvai M, Szarka K et al (2007) Survivin promoter polymorphism and cervical carcinogenesis. J Clin Pathol 60:303–306

    Article  PubMed  CAS  Google Scholar 

  23. Borges BD, Burbano RR, Harada ML (2010) Survivin −31C/G polymorphism and gastric cancer risk in a Brazilian population. Clin Exp Med 11:189–193

    Article  Google Scholar 

  24. Upadhyay R, Khurana R, Kumar S et al (2011) Role of survivin gene promoter polymorphism (−31G>C) in susceptibility and survival of esophageal cancer in northern India. Ann Surg Oncol 18:880–887

    Article  PubMed  Google Scholar 

  25. Bayram S, Akkiz H, Bekar A, Akgollu E (2011) The association between the survivin −31G/C promoter polymorphism and hepatocellular carcinoma risk in a Turkish population. Cancer Epidemiol 35:555–559

    Article  PubMed  CAS  Google Scholar 

  26. Lancaster A, Nelson MP, Meyer D et al (2003). PyPop: a software framework for population genomics—analyzing large-scale multi-locus genotype data. Pac Symp Biocomput 514–525

  27. Attia J, Thakkinstian A, McElduff P et al (2010) Detecting genotyping error using measures of degree of Hardy–Weinberg disequilibrium. Stat Appl Genet Mol Biol 9:article 5

  28. Gomes M, Coelho A, Araújo A et al (2012) Influence of functional genetic polymorphism (−590C/T) in non-small cell lung cancer (NSCLC) development: the paradoxal role of Il-4. Gene 504:111–115

    Article  PubMed  CAS  Google Scholar 

  29. Li Y, Wang J, Jiang F et al (2012) Association of polymorphisms in survivin gene with the risk of hepatocellular carcinoma in Chinese Han population: a case–control study. BMC Med Genet 13:1

    Article  PubMed  Google Scholar 

  30. Ma F, Zhang H, Huang W et al (2011) Functional polymorphism −31C/G in the promoter of BIRC5 gene and risk of nasopharyngeal carcinoma among chinese. PLoS One 6(2):e16748

    Article  PubMed  CAS  Google Scholar 

  31. Yazdani N, Sayahpour FA, Haghpanah V et al (2012) Survivin gene polymorphism association with papillary thyroid carcinoma. Pathol Res Pract 208:100–103

    Article  PubMed  CAS  Google Scholar 

  32. Jaiswal PK, Goel A, Mandhani A et al (2012) Functional polymorphisms in promoter survivin gene and its association with susceptibility to bladder cancer in north Indian cohort. Mol Biol Rep 39:5615–5621

    Article  PubMed  CAS  Google Scholar 

  33. Weng CJ, Hsieh YH, Chen MK et al (2012) Survivin SNP–carcigonen interactions in oral cancer. J Dent Res 91:358–363

    Article  PubMed  CAS  Google Scholar 

  34. Wang X, Huang L, Xu Y et al (2012) Association between survivin −31G>C promotor polymorphism and cancer risk: a meta-analysis. Eur J Hum Genet 20:790–795

    Article  PubMed  CAS  Google Scholar 

  35. Srivastava K, Srivastava A, Mittal B (2012) Survivin promotor −31G/C (rs9904341) polymorphism and cancer susceptibility: a meta analysis. Mol Biol Rep 39:1509–1516

    Article  PubMed  CAS  Google Scholar 

  36. Hoffman WH, Biade S, Zilfou JT et al (2002) Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277:3247–3257

    Article  PubMed  CAS  Google Scholar 

  37. Frew IJ, Krek W (2007) Multitasking by pVHL in tumour suppression. Curr Opin Cell Biol 19:685–690

    Article  PubMed  CAS  Google Scholar 

  38. Yu X, Zhang X, Dhakal IB et al (2012) Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells. BMC Cancer 12:29

    Article  PubMed  CAS  Google Scholar 

  39. O’Connor DS, Schechner JS, Adida C et al (2000) Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 156:393–398

    Article  PubMed  Google Scholar 

  40. Liu JR, Opipari AW, Tan L et al (2002) Dysfunctional apoptosome activation in ovarian cancer: implications for chemoresistance. Cancer Res 62:924–931

    PubMed  CAS  Google Scholar 

  41. Gerhard MC, Zantl N, Weirich G et al (2003) Functional evaluation of the apoptosome in renal cell carcinoma. Br J Cancer 89:2147–2154

    Article  PubMed  CAS  Google Scholar 

  42. Ulybina YM, Kuligina E, Mitiushkina NV et al (2009) Coding polymorphisms in Casp5, Casp8 and DR4 genes may play a role in predisposition to lung cancer. Cancer Lett 278:183–191

    Article  PubMed  CAS  Google Scholar 

  43. Lou Y, Fang CQ, Li JH (2007) A study on the expression of CASP9 gene and its polymorphism distribution in non-small cell lung cancer. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 24:59–62

    PubMed  CAS  Google Scholar 

  44. Hlavaty T, Pierik M, Henckaerts L et al (2005) Polymorphisms in apoptosis genes predict response to infliximab therapy in luminal and fistulizing Crohn’s disease. Aliment Pharmacol Ther 22:613–626

    Article  PubMed  CAS  Google Scholar 

  45. Ulybina YM, Kuligina ES, Mitiushkina NV et al (2011) Distribution of coding apoptotic gene polymorphisms in women with extreme phenotypes of breast cancer predisposition and tolerance. Tumir 97:248–251

    Google Scholar 

  46. Lavender NA, Rogers EN, Yeyeodu S et al (2012) Interaction among apoptosis-associated sequence variants and joint effects on aggressive prostate cancer. BMC Med Genomics 5:11

    Article  PubMed  CAS  Google Scholar 

  47. Guo C, Ahmad T, Beckly J et al (2011) Association of caspase-9 and RNUX3 with inflammatory bowel disease. Tissue Antigens 77:23–29

    Article  PubMed  CAS  Google Scholar 

  48. Ferreira, Cravo M, Guerreiro CS et al (2010) Fat intake interacts with polymorphisms of Caspase9, FasLigand and PPARgama apoptotic genes in modulating Crohn’s disease activity. Clin Nutr. 29:819–823

    Article  PubMed  CAS  Google Scholar 

  49. Wang Q, Li X, Wang L et al (2004) Antiapoptotic effects of estrogen in normal and cancer human cervical epithelial cells. Endocrinology 145:5568–5579

    Article  PubMed  CAS  Google Scholar 

  50. Campsall PA, Au NH, Prendiville JS et al (2004) Detection and genotyping of varicella-zoster virus by TaqMan allelic discrimination real-time PCR. J Clin Microbiol 42:1409–1413

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Liga Portuguesa Contra o Cancro—Centro Regional do Norte (Portuguese League Against Cancer) and FCT—Fundação para a Ciência e Tecnologia. ALT is a Doctoral degree grant holder from FCT (SFRH/BD/47381/2008). This project was partially sponsored by an unrestricted educational grant for basic research in Molecular Oncology from AstraZeneca Foundation.

Conflict of interest

None of the authors has any commercial association that might create a conflict of interest in connection with this submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Medeiros.

Additional information

Inês Marques and Ana L. Teixeira contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, I., Teixeira, A.L., Ferreira, M. et al. Influence of survivin (BIRC5) and caspase-9 (CASP9) functional polymorphisms in renal cell carcinoma development: a study in a southern European population. Mol Biol Rep 40, 4819–4826 (2013). https://doi.org/10.1007/s11033-013-2578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2578-3

Keywords

Navigation