Skip to main content
Log in

Plasma-free amino acid profiling of cervical cancer and cervical intraepithelial neoplasia patients and its application for early detection

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In this study, plasma-free amino acid profiles were used to investigate pre-cancerous cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) metabolic signatures in plasma. Additionally, the diagnostic potential of these profiles was assessed, as well as their ability to provide novel insight into CSCC metabolism and systemic effects. Plasma samples from CIN patients (n = 26), CSCC patients (n = 22), and a control healthy group (n = 35) were analyzed by high-performance liquid chromatography, and their spectral profiles were subjected to the t test for statistical significance. Potential metabolic biomarkers were identified using database comparisons that examine the significance of metabolites. Compared with healthy controls, patients with CIN and CSCC demonstrated lower levels of plasma amino acids; plasma levels of arginine and threonine were increased in CIN patients but were decreased in cervical cancer patients. Additionally, the levels of a larger group of amino acids (aspartate, glutamate, asparagine, serine, glycine, histidine, taurine, tyrosine, valine, methionine, lysine, isoleucine, leucine, and phenylalanine) were gradually reduced from CIN to invasive cancer. These findings suggest that plasma-free amino acid profiling has great potential for improving cancer screening and diagnosis and for understanding disease pathogenesis. Plasma-free amino acid profiles may have the potential be used to determine cancer diagnoses in the early stage from a single blood sample and may enhance our understanding of its mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    Article  PubMed  CAS  Google Scholar 

  2. Schiffman MH, Brinton LA (1995) The epidemiology of cervical carcinogenesis. Cancer 76:1888–1901

    Article  PubMed  CAS  Google Scholar 

  3. Zur Hausen H (2000) Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst 92:690–698

    Article  PubMed  CAS  Google Scholar 

  4. Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV (2002) The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55:244–265

    Article  PubMed  CAS  Google Scholar 

  5. Altman BJ, Dang CV (2012) Normal and cancer cell metabolism: lymphocytes and lymphoma. FEBS J 279:2598–2609

    Article  PubMed  CAS  Google Scholar 

  6. Ward PS, Thompson CB (2012) Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol. 4(7):a006783

    Article  PubMed  Google Scholar 

  7. Holm E, Sedlaczek O, Grips E (1999) Amino acid metabolism in liver disease. Curr Opin Clin Nutr Metab Care 2:47–53

    Article  PubMed  CAS  Google Scholar 

  8. Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T, Miura T, Saruki N, Bando E, Kimura H, Imamura F, Moriyama M, Ikeda I, Chiba A, Oshita F, Imaizumi A, Yamamoto H, Miyano H, Horimoto K, Tochikubo O, Mitsushima T, Yamakado M, Okamoto N (2011) Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One 6(9):e24143

    Google Scholar 

  9. Hasim Ayshamgul, Eli Maynur, Mamtimin Batur et al (2012) Metabonomic signature analysis of cervical carcinoma and precancerous diseases in Uighur women by 1H-NMR spectroscopy. Exp Ther Med 3:945–951

    PubMed  CAS  Google Scholar 

  10. Spratlin JL, Serkova NJ, Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15:431–440

    Article  PubMed  CAS  Google Scholar 

  11. Lenz EM, Wilson ID (2007) Analytical strategies in metabonomics. J Proteome Res 6:443–458

    Article  PubMed  CAS  Google Scholar 

  12. Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta 659:23–33

    Article  PubMed  CAS  Google Scholar 

  13. Sitter B, Bathen T, Hagen B, Arentz C, Skjeldestad FE, Gribbestad IS (2004) Cervical cancer tissue characterized by high-resolution magic angle spinning MR spectroscopy. MAGMA 16:174–181

    Article  PubMed  CAS  Google Scholar 

  14. Tiziani S, Lopes V, Gunther UL (2009) Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia 11:269–276

    PubMed  CAS  Google Scholar 

  15. Roth C, Kasimir-Bauer S, Pantel K, Schwarzenbach H (2011) Screening for circulating nucleic acids and caspase activity in the peripheral blood as potential diagnostic tools in lung cancer. Mol Oncol 5:281–291

    Article  PubMed  CAS  Google Scholar 

  16. Vissers YL, Dejong CH, Luiking YC, Fearon KC, von Meyenfeldt MF et al (2005) Plasma arginine concentrations are reduced in cancer patients: evidence for arginine deficiency? Am J Clin Nutr 81:1142–1146

    PubMed  CAS  Google Scholar 

  17. Cascino A, Muscaritoli M, Cangiano C, Conversano L, Laviano A et al (1995) Plasma amino acid imbalance in patients with lung and breast cancer. Anti cancer Res 15:507–510

    CAS  Google Scholar 

  18. Allen JR, Prost RW, Griffith OW et al (2001) In vivo proton (H1) magnetic resonance spectroscopy for cervical carcinoma. Am J Clin Oncol 24:522–529

    Article  PubMed  CAS  Google Scholar 

  19. Mountford CE, Delikatny EJ, Dyne M et al (1990) Uterine cervical punch biopsy specimens can be analyzed by 1H MRS. Magn Reson Med 13:324–331

    Article  PubMed  CAS  Google Scholar 

  20. Delikatny EJ, Russell P, Hunter JC et al (1993) Proton MR and human cervical neoplasia: ex vivo spectroscopy allows distinction of invasive carcinoma of the cervix from carcinoma in situ and other preinvasive lesions. Radiology 188:791–796

    PubMed  CAS  Google Scholar 

  21. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the War burg effect, the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed  CAS  Google Scholar 

  22. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  PubMed  CAS  Google Scholar 

  23. Li QZ, Huang QX, Li SC, Yang MZ, Rao B (2012) Simultaneous determination of glutamate, glycine, and alanine in human plasma using precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and high-performance liquid chromatography. Korean J Physiol Pharmacol 16(5):355–360

    Article  PubMed  CAS  Google Scholar 

  24. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M et al (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69(11):4918–4925

    Article  PubMed  CAS  Google Scholar 

  25. Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Humpfer E, Spraul M, Carreira IM, Melo JB, Bernardo J, Gomes A et al (2010) Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J Proteome Res 9(1):319–332

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Q, Takahashi M, Noguchi Y, Sugimoto T, Kimura T, Okumura A, Ishikawa T, Kakumu S (2006) Plasma amino acid profiles applied for diagnosis of advanced liver fibrosis in patients with chronic hepatitis C infection. Hepatol Res 34(3):170–177

    Article  PubMed  CAS  Google Scholar 

  27. Maeda J, Higashiyama M, Imaizumi A, Nakayama T, Yamamoto H, Daimon T, Yamakado M, Imamura F, Kodama K (2010) Possibility of multivariate function composed of plasma amino acid profiles as a novel screening index for non-small cell lung cancer: a case control study. BMC Cancer 22(10):690

    Article  Google Scholar 

  28. Okamoto N, Miyagi Y, Chiba A, Akaike M, Shiozawa M et al (2009) Diagnostic modeling with differences in plasma amino acid profiles between non-cachectic colorectal/breast cancer patients and healthy individuals. Int J Med Med Sci 1:1–8

    CAS  Google Scholar 

  29. Cascino A, Cangiano C, Ceci F, Franchi F, Menichetti ET, Muscaritoli M, Fanelli FR (1998) Plasma amino-acids in human cancer: the individual role of tumour, malnutrition and glucose tolerance. Clin Nutr 7:213–218

    Article  Google Scholar 

  30. Mustafa A, Gupta S, Hudes GR, Egleston BL, Uzzo RG, Kruger WD (2011) Serum amino acid levels as a biomarker for renal cell carcinoma. J Urol 186(4):1206–1212

    Article  PubMed  CAS  Google Scholar 

  31. Urayama S, Zou W, Brooks K, Tolstikov V (2010) Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer. Rapid Commun Mass Spectrom 24(5):613–620

    Article  PubMed  CAS  Google Scholar 

  32. Lai HS, Lee JC, Lee PH, Wang ST, Chen WJ (2005) Plasma free amino acid profile in cancer patients. Semin Cancer Biol 15:267–276

    Article  PubMed  CAS  Google Scholar 

  33. Wilson EA, Sprague AD, Hurst ME, Roddick JK Jr (1976) Free serum amino acids in patients with advanced cervical carcinoma. Gynecol Oncol 4(3):311–313

    Article  PubMed  CAS  Google Scholar 

  34. Fan J, Hong J, Hu JD, Chen JL (2012) Ion chromatography based urine amino acid profiling applied for diagnosis of gastric cancer. Gastroenterol Res Pract 2012:474907

    PubMed  Google Scholar 

  35. Kubota A, Meguid MM, Hitch DC (1992) Amino acid profiles correlate diagnostically with organ site in three kinds of malignant tumors. Cancer 69:2343–2348

    Article  PubMed  CAS  Google Scholar 

  36. Naini AB, Dickerson JW, Brown MM (1998) Preoperative and postoperative levels of plasma protein and amino acid in esophageal and lung cancer patients. Cancer 62:355–360

    Article  Google Scholar 

  37. Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, Phang JM (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA 109(23):8983–8988

    Article  PubMed  CAS  Google Scholar 

  38. Rudman D, Vogler WR, Howard CH, Gerron GG (1971) Observations on the plasma amino acids of patients with acute leukemia. Cancer Res 31(8):1159–1165

    PubMed  CAS  Google Scholar 

  39. Fläring UB, Rooyackers OE, Wernerman J, Hammarqvist F (2003) Glutamine attenuates post-traumatic glutathione depletion in human muscle. Clin Sci (Lond) 104(3):275–282

    Article  Google Scholar 

  40. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJ, Lorkiewicz PK, Higashi RM, Fan TW, Dang CV (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1):110–121

    Article  PubMed  CAS  Google Scholar 

  41. Hasim A, Ma H, Mamtimin B, Abudula A, Niyaz M, Zhang LW, Anwer J, Sheyhidin I (2012) Revealing the metabonomic variation of EC using ¹H-NMR spectroscopy and its association with the clinicopathological characteristics. Mol Biol Rep 39(9):8955–8964

    Article  PubMed  CAS  Google Scholar 

  42. Yasushi N, Qing-Wei Zh, Tetsuya S, Yasufumi F, Ryosei S, Mori Masato, Mitsuo T, Takeshi K (2006) Network analysis of plasma and tissue amino acids and the generation of an amino index for potential diagnostic use. Am J Clin Nutr 83:513S–519S

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Xinjiang Uighur Autonomous Region (2012211A043) and the Key Laboratory Foundation of Xinjiang Uygur Autonomous Region (XJDX0208-2011–01).

Conflict of interest

The authors state that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Additional information

Ayshamgul Hasim and Aixingzi Aili contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasim, A., Aili, A., Maimaiti, A. et al. Plasma-free amino acid profiling of cervical cancer and cervical intraepithelial neoplasia patients and its application for early detection. Mol Biol Rep 40, 5853–5859 (2013). https://doi.org/10.1007/s11033-013-2691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2691-3

Keywords

Navigation