Skip to main content
Log in

Ginsenoside Rh2 alleviates dextran sulfate sodium-induced colitis via augmenting TGFβ signaling

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ginsenoside Rh2 (GRh2) has been reported to have therapeutic effects on various diseases. However, whether it may also affect the recovery from ulcerative colitis remains unknown. Here we induced colitis in mice by dextran sulfate sodium (DSS) administration, and then treated the mice with GRh2. We found that GRh2-treated mice showed significant alleviation of the DSS-induced colitis. Moreover, significant increase in the activity of TGFβ signaling was detected in the GRh2-treated colon that had received DSS. To investigate whether there is a causative link among GRh2 treatment, TGFβ signaling augment and the cure of colitis, we gave the DSS-treated mice a combination of GRh2 and a specific TGFβ receptor I inhibitor, SB431542. SB431542 significantly decreased the activation of TGFβ signaling in the colon from the GRh2-administrated mice, and consequently attenuated the therapeutic effect of GRh2. Our data thus demonstrate that GRh2 may alleviate DSS-induced colitis via augmenting TGFβ signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Ginsenoside Rh2:

GRh2

DSS:

Dextran sulfate sodium

TGF:

Transforming growth factor

References

  1. Uhlig HH (2013) Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut 62:1795–1805

    Article  CAS  PubMed  Google Scholar 

  2. Plevy SE, Targan SR (2011) Future therapeutic approaches for inflammatory bowel diseases. Gastroenterology 140:1838–1846

    Article  PubMed  Google Scholar 

  3. Strober W, Fuss IJ (2011) Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140:1756–1767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Rutgeerts P, Vermeire S, Van Assche G (2009) Biological therapies for inflammatory bowel diseases. Gastroenterology 136:1182–1197

    Article  CAS  PubMed  Google Scholar 

  5. Sartor RB (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134:577–594

    Article  CAS  PubMed  Google Scholar 

  6. Sartor RB (2006) Microbial and dietary factors in the pathogenesis of chronic, immune-mediated intestinal inflammation. Adv Exp Med Biol 579:35–54

    Article  CAS  PubMed  Google Scholar 

  7. Strober W, Fuss I, Mannon P (2007) The fundamental basis of inflammatory bowel disease. J Clin Invest 117:514–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702

    CAS  PubMed  Google Scholar 

  9. Dieleman LA, Palmen MJ, Akol H, Bloemena E, Pena AS, Meuwissen SG et al (1998) Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol 114:385–391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wang C, Chen J, Sun L, Liu Y (2014) TGF-beta signaling-dependent alleviation of dextran sulfate sodium-induced colitis by mesenchymal stem cell transplantation. Mol Biol Rep. doi:10.1007/s11033-014-3364-6

  11. Li S, Gao Y, Ma W, Guo W, Zhou G, Cheng T et al (2014) EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside Rh2. Tumour Biol. doi:10.1007/s13277-014-1739-x

  12. Bi WY, Fu BD, Shen HQ, Wei Q, Zhang C, Song Z et al (2012) Sulfated derivative of 20(S)-ginsenoside Rh2 inhibits inflammatory cytokines through MAPKs and NF-kappa B pathways in LPS-induced RAW264.7 macrophages. Inflammation 35:1659–1668

    Article  CAS  PubMed  Google Scholar 

  13. Lee WK, Kao ST, Liu IM, Cheng JT (2007) Ginsenoside Rh2 is one of the active principles of Panax ginseng root to improve insulin sensitivity in fructose-rich chow-fed rats. Horm Metab Res 39:347–354

    Article  CAS  PubMed  Google Scholar 

  14. Zhu JH, Takeshita T, Kitagawa I, Morimoto K (1995) Suppression of the formation of sister chromatid exchanges by low concentrations of ginsenoside Rh2 in human blood lymphocytes. Cancer Res 55:1221–1223

    CAS  PubMed  Google Scholar 

  15. Callahan JF, Burgess JL, Fornwald JA, Gaster LM, Harling JD, Harrington FP et al (2002) Identification of novel inhibitors of the transforming growth factor beta1 (TGF-beta1) type 1 receptor (ALK5). J Med Chem 45:999–1001

    Article  CAS  PubMed  Google Scholar 

  16. Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C et al (2002) Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol 62:58–64

    Article  CAS  PubMed  Google Scholar 

  17. Matsuyama S, Iwadate M, Kondo M, Saitoh M, Hanyu A, Shimizu K et al (2003) SB-431542 and Gleevec inhibit transforming growth factor-beta-induced proliferation of human osteosarcoma cells. Cancer Res 63:7791–7798

    CAS  PubMed  Google Scholar 

  18. Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD et al (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74

    Article  CAS  PubMed  Google Scholar 

  19. Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L et al (2014) M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci USA 111:E1211–E1220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Fish J, Healy J, Gensure R, Choe E, Ferrara J (1993) Effect of peritoneal and gastric irrigation with ozonated saline on arterial and venous blood gas values. Life Sci 53:1867–1872

    Article  CAS  PubMed  Google Scholar 

  21. Wirtz S, Neufert C, Weigmann B, Neurath MF (2007) Chemically induced mouse models of intestinal inflammation. Nat Protoc 2:541–546

    Article  CAS  PubMed  Google Scholar 

  22. Maunder RG, Greenberg GR (2004) Comparison of a disease activity index and patients’ self-reported symptom severity in ulcerative colitis. Inflamm Bowel Dis 10:632–636

    Article  PubMed  Google Scholar 

  23. Seo M, Okada M, Yao T, Ueki M, Arima S, Okumura M (1992) An index of disease activity in patients with ulcerative colitis. Am J Gastroenterol 87:971–976

    CAS  PubMed  Google Scholar 

  24. Rutegard I, Ahsgren L, Stenling R, Nilsson T (1990) A simple index for assessment of disease activity in patients with ulcerative colitis. Hepatogastroenterology 37(Suppl 2):110–112

    PubMed  Google Scholar 

  25. Campbell CF (2010) Isolation and culture of mouse intestinal cells. Methods Mol Biol 633:197–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (81173240), Science and Technology Fund of Guangdong (2011B031700065), Fund of Guangdong Medical College (Z2013001 and B2013019).

Conflict of interest

The author(s) declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Wu, Q., Zhu, Y. et al. Ginsenoside Rh2 alleviates dextran sulfate sodium-induced colitis via augmenting TGFβ signaling. Mol Biol Rep 41, 5485–5490 (2014). https://doi.org/10.1007/s11033-014-3422-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3422-0

Keywords

Navigation