Skip to main content
Log in

Identifying a biomarker network for corticosteroid resistance in asthma from bronchoalveolar lavage samples

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Corticosteroid resistance (CR) is a major barrier to the effective treatment of severe asthma. Hence, a better understanding of the molecular mechanisms involved in this condition is a priority. Network analysis is an emerging strategy to explore this complex heterogeneous disorder at system level to identify a small own network for CR in asthma. Gene expression profile of GSE7368 from bronchoalveolar lavage (BAL) of CR in subjects with asthma was downloaded from the gene expression omnibus (GEO) database and compared to BAL of corticosteroid-sensitive (CS) patients. DEGs were identified by the Limma package in R language. In addition, DEGs were mapped to STRING to acquire protein–protein interaction (PPI) pairs. Topological properties of PPI network were calculated by Centiscape, ClusterOne and BINGO. Subsequently, text-mining tools were applied to design one own cell signalling for CR in asthma. Thirty-five PPI networks were obtained; including a major network consisted of 370 nodes, connected by 777 edges. After topological analysis, a minor PPI network composed by 48 nodes was indentified, which is composed by most relevant nodes of major PPI network. In this subnetwork, several receptors (EGFR, EGR1, ESR2, PGR), transcription factors (MYC, JAK), cytokines (IL8, IL6, IL1B), one chemokine (CXCL1), one kinase (SRC) and one cyclooxygenase (PTGS2) were described to be associated with inflammatory environment and steroid resistance in asthma. We suggest a biomarker network composed by 48 nodes that could be potentially explored with diagnostic or therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM (2000) Asthma. From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med 161(5):1720–1745. doi:10.1164/ajrccm.161.5.9903102

    Article  CAS  PubMed  Google Scholar 

  2. Hargreave FE, Dolovich J, O’Byrne PM, Ramsdale EH, Daniel EE (1986) The origin of airway hyperresponsiveness. J Allergy Clin Immunol 78(5 Pt 1):825–832

    Article  CAS  PubMed  Google Scholar 

  3. Bousquet J, Khaltaev NG, Cruz AA (2007) Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. World Health Organization, Geneva

  4. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basanez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabe E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fevre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O’Donnell M, O’Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA 3rd, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leon FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2163–2196. doi:10.1016/S0140-6736(12)61729-2

    Article  PubMed  Google Scholar 

  5. Olin JT, Wechsler ME (2014) Asthma: pathogenesis and novel drugs for treatment. BMJ 349:g5517. doi:10.1136/bmj.g5517

    Article  PubMed  Google Scholar 

  6. Barnes CB, Ulrik CS (2015) Asthma and adherence to inhaled corticosteroids: current status future perspectives. Respir care 60(3):455–468. doi:10.4187/respcare.03200

    Article  PubMed  Google Scholar 

  7. Barnes PJ (2013) Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 131(3):636–645. doi:10.1016/j.jaci.2012.12.1564

    Article  CAS  PubMed  Google Scholar 

  8. Kim SR, Lee YC (2015) Endoplasmic reticulum stress and the related signaling networks in severe asthma. Allergy Asthma Immunol Res 7(2):106–117. doi:10.4168/aair.2015.7.2.106

    Article  PubMed  Google Scholar 

  9. Barnes PJ (2011) Glucocorticosteroids: current and future directions. Br J Pharmacol 163(1):29–43. doi:10.1111/j.1476-5381.2010.01199.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leung DY, Martin RJ, Szefler SJ, Sher ER, Ying S, Kay AB, Hamid Q (1995) Dysregulation of interleukin 4, interleukin 5, and interferon gamma gene expression in steroid-resistant asthma. J Exp Med 181(1):33–40

    Article  CAS  PubMed  Google Scholar 

  11. Irusen E, Matthews JG, Takahashi A, Barnes PJ, Chung KF, Adcock IM (2002) p38 Mitogen-activated protein kinase-induced glucocorticoid receptor phosphorylation reduces its activity: role in steroid-insensitive asthma. J Allergy Clin Immunol 109(4):649–657

    Article  CAS  PubMed  Google Scholar 

  12. Finkelman FD, Hogan SP, Hershey GK, Rothenberg ME, Wills-Karp M (2010) Importance of cytokines in murine allergic airway disease and human asthma. J Immunol 184(4):1663–1674. doi:10.4049/jimmunol.0902185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gelder CM, Thomas PS, Yates DH, Adcock IM, Morrison JF, Barnes PJ (1995) Cytokine expression in normal, atopic, and asthmatic subjects using the combination of sputum induction and the polymerase chain reaction. Thorax 50(10):1033–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hamid QA, Wenzel SE, Hauk PJ, Tsicopoulos A, Wallaert B, Lafitte JJ, Chrousos GP, Szefler SJ, Leung DY (1999) Increased glucocorticoid receptor beta in airway cells of glucocorticoid-insensitive asthma. Am J Respir Crit Care Med 159(5 Pt 1):1600–1604. doi:10.1164/ajrccm.159.5.9804131

    Article  CAS  PubMed  Google Scholar 

  15. Liang R, Wang L, Wang G (2013) New insight into genes in association with asthma: literature-based mining and network centrality analysis. Chin Med J 126(13):2472–2479

    CAS  PubMed  Google Scholar 

  16. March ME, Sleiman PM, Hakonarson H (2013) Genetic polymorphisms and associated susceptibility to asthma. Int J Gen med 6:253–265. doi:10.2147/IJGM.S28156

    PubMed  PubMed Central  Google Scholar 

  17. Vandamme D, Fitzmaurice W, Kholodenko B, Kolch W (2013) Systems medicine: helping us understand the complexity of disease. QJM 106(10):891–895. doi:10.1093/qjmed/hct163

    Article  CAS  PubMed  Google Scholar 

  18. Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306(5696):640–643. doi:10.1126/science.1104635

    Article  CAS  PubMed  Google Scholar 

  19. Schneider MV (2013) Defining systems biology: a brief overview of the term and field. Methods Mol Biol 1021:1–11. doi:10.1007/978-1-62703-450-0_1

    Article  PubMed  Google Scholar 

  20. Wang J, Zuo Y, Man YG, Avital I, Stojadinovic A, Liu M, Yang X, Varghese RS, Tadesse MG, Ressom HW (2015) Pathway and network approaches for identification of cancer signature markers from omics data. J Cancer 6(1):54–65. doi:10.7150/jca.10631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morrow JD, Qiu W, Chhabra D, Rennard SI, Belloni P, Belousov A, Pillai SG, Hersh CP (2015) Identifying a gene expression signature of frequent COPD exacerbations in peripheral blood using network methods. BMC Med Genomics 8(1):1. doi:10.1186/s12920-014-0072-y

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cho JH, Gelinas R, Wang K, Etheridge A, Piper MG, Batte K, Dakhallah D, Price J, Bornman D, Zhang S, Marsh C, Galas D (2011) Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes. BMC Med Genomics 4:8. doi:10.1186/1755-8794-4-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sircar G, Saha B, Bhattacharya SG, Saha S (2014) Allergic asthma biomarkers using systems approaches. Front genet 4:308. doi:10.3389/fgene.2013.00308

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vargas JE, Puga R, Poloni Jde F, Saraiva Macedo Timmers LF, Porto BN, Norberto de Souza O, Bonatto D, Condessa Pitrez PM, Tetelbom Stein R (2015) A network flow approach to predict protein targets and flavonoid backbones to treat respiratory syncytial virus infection. BioMed Res int 2015:301635. doi:10.1155/2015/301635

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goleva E, Hauk PJ, Hall CF, Liu AH, Riches DW, Martin RJ, Leung DY (2008) Corticosteroid-resistant asthma is associated with classical antimicrobial activation of airway macrophages. J Allergy Clin Immunol 122(3):550–559. doi:10.1016/j.jaci.2008.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smyth GK (2005) Limma: linear models for microarray data. bioinformatics and computational biology solutions using R and bioconductor. Statistics for biology and health:397-420

  27. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. doi:10.1101/gr.123930313/11/2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scardoni G, Petterlini M, Laudanna C (2009) Analyzing biological network parameters with CentiScaPe. Bioinformatics 25(21):2857–2859. doi:10.1093/bioinformatics/btp517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Netw 27:39–54

    Article  Google Scholar 

  30. Vilela M, Chou IC, Vinga S, Vasconcelos AT, Voit EO, Almeida JS (2008) Parameter optimization in S-system models. BMC Syst Biol 2:35. doi:10.1186/1752-0509-2-35

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  32. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449. doi:10.1093/bioinformatics/bti551

    Article  CAS  PubMed  Google Scholar 

  33. Rivals I, Personnaz L, Taing L, Potier MC (2007) Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 23(4):401–407. doi:10.1093/bioinformatics/btl633

    Article  CAS  PubMed  Google Scholar 

  34. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125(1–2):279–284

    Article  CAS  PubMed  Google Scholar 

  35. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):D808–815. doi:10.1093/nar/gks1094

    Article  CAS  PubMed  Google Scholar 

  36. Landry Y, Gies JP (2002) Heterotrimeric G proteins control diverse pathways of transmembrane signaling, a base for drug discovery. Mini Rev Med Chem 2(4):361–372

    Article  CAS  PubMed  Google Scholar 

  37. Johnson EN, Druey KM (2002) Heterotrimeric G protein signaling: role in asthma and allergic inflammation. J Allergy Clin Immunol 109(4):592–602

    Article  CAS  PubMed  Google Scholar 

  38. Michel O, Kips J, Duchateau J, Vertongen F, Robert L, Collet H, Pauwels R, Sergysels R (1996) Severity of asthma is related to endotoxin in house dust. Am J Respir Crit Care Med 154(6 Pt 1):1641–1646. doi:10.1164/ajrccm.154.6.8970348

    Article  CAS  PubMed  Google Scholar 

  39. Kopf M, Schneider C, Nobs SP (2015) The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 16(1):36–44. doi:10.1038/ni.3052

    Article  CAS  PubMed  Google Scholar 

  40. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737. doi:10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soroosh P, Doherty TA, Duan W, Mehta AK, Choi H, Adams YF, Mikulski Z, Khorram N, Rosenthal P, Broide DH, Croft M (2013) Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J Exp Med 210(4):775–788. doi:10.1084/jem.20121849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964. doi:10.1038/nri1733

    Article  CAS  PubMed  Google Scholar 

  43. Yang M, Kumar RK, Hansbro PM, Foster PS (2012) Emerging roles of pulmonary macrophages in driving the development of severe asthma. J Leukoc Biol 91(4):557–569. doi:10.1189/jlb.0711357

    Article  CAS  PubMed  Google Scholar 

  44. Lee H, Bae S, Choi BW, Yoon Y (2012) WNT/beta-catenin pathway is modulated in asthma patients and LPS-stimulated RAW264.7 macrophage cell line. Immunopharmacol Immunotoxicol 34(1):56–65. doi:10.3109/08923973.2011.574704

    Article  CAS  PubMed  Google Scholar 

  45. Hsing M, Bellenson JL, Shankey C, Cherkasov A (2004) Modeling of cell signaling pathways in macrophages by semantic networks. BMC Bioinform 5:156. doi:10.1186/1471-2105-5-156

    Article  Google Scholar 

  46. Wu Y, Zhang JF, Xu T, Xu L, Qiao J, Liu F, Shan H, Jiang X (2015) Identification of therapeutic targets for childhood severe asthmatics with DNA microarray. Allergol Immunopathol. doi:10.1016/j.aller.2015.03.002

    Google Scholar 

  47. Hastie AT, Moore WC, Meyers DA, Vestal PL, Li H, Peters SP, Bleecker ER, National Heart L, Blood Institute Severe Asthma Research P (2010) Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J Allergy Clin Immunol 125(5):1028–1036. doi:10.1016/j.jaci.2010.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mauri P, Riccio AM, Rossi R, Di Silvestre D, Benazzi L, De Ferrari L, Dal Negro RW, Holgate ST, Canonica GW (2014) Proteomics of bronchial biopsies: galectin-3 as a predictive biomarker of airway remodelling modulation in omalizumab-treated severe asthma patients. Immunol Lett 162(1 Pt A):2–10. doi:10.1016/j.imlet.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  49. Vercelli D, Jabara HH, Arai K, Yokota T, Geha RS (1989) Endogenous interleukin 6 plays an obligatory role in interleukin 4-dependent human IgE synthesis. Eur J Immunol 19(8):1419–1424. doi:10.1002/eji.1830190811

    Article  CAS  PubMed  Google Scholar 

  50. Marini M, Vittori E, Hollemborg J, Mattoli S (1992) Expression of the potent inflammatory cytokines, granulocyte-macrophage-colony-stimulating factor and interleukin-6 and interleukin-8, in bronchial epithelial cells of patients with asthma. J Allergy Clin Immunol 89(5):1001–1009

    Article  CAS  PubMed  Google Scholar 

  51. Sousa AR, Lane SJ, Nakhosteen JA, Lee TH, Poston RN (1996) Expression of interleukin-1 beta (IL-1beta) and interleukin-1 receptor antagonist (IL-1ra) on asthmatic bronchial epithelium. Am J Respir Crit Care Med 154(4 Pt 1):1061–1066. doi:10.1164/ajrccm.154.4.8887608

    Article  CAS  PubMed  Google Scholar 

  52. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 4(3). doi:10.1101/cshperspect.a006049

  53. Guha M, O’Connell MA, Pawlinski R, Hollis A, McGovern P, Yan SF, Stern D, Mackman N (2001) Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98(5):1429–1439

    Article  CAS  PubMed  Google Scholar 

  54. Sweet MJ, Hume DA (1996) Endotoxin signal transduction in macrophages. J Leukoc Biol 60(1):8–26

    CAS  PubMed  Google Scholar 

  55. Kramer EL, Mushaben EM, Pastura PA, Acciani TH, Deutsch GH, Khurana Hershey GK, Korfhagen TR, Hardie WD, Whitsett JA, Le Cras TD (2009) Early growth response-1 suppresses epidermal growth factor receptor-mediated airway hyperresponsiveness and lung remodeling in mice. Am J Respir Cell Mol Biol 41(4):415–425. doi:10.1165/rcmb.2008-0470OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rincon M, Irvin CG (2012) Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int J Biol Sci 8(9):1281–1290. doi:10.7150/ijbs.4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Diehl S, Anguita J, Hoffmeyer A, Zapton T, Ihle JN, Fikrig E, Rincon M (2000) Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity 13(6):805–815

    Article  CAS  PubMed  Google Scholar 

  58. Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M (2012) IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci 122(4):143–159. doi:10.1042/CS20110340

    Article  CAS  PubMed  Google Scholar 

  59. Tsuchiya K, Jo T, Takeda N, Al Heialy S, Siddiqui S, Shalaby KH, Risse PA, Maghni K, Martin JG (2010) EGF receptor activation during allergic sensitization affects IL-6-induced T-cell influx to airways in a rat model of asthma. Eur J Immunol 40(6):1590–1602. doi:10.1002/eji.200939907

    Article  CAS  PubMed  Google Scholar 

  60. Hamilton LM, Torres-Lozano C, Puddicombe SM, Richter A, Kimber I, Dearman RJ, Vrugt B, Aalbers R, Holgate ST, Djukanovic R, Wilson SJ, Davies DE (2003) The role of the epidermal growth factor receptor in sustaining neutrophil inflammation in severe asthma. Clin exp Allergy :J Br Soc Allergy Clin Immunol 33(2):233–240

    Article  CAS  Google Scholar 

  61. Burgel PR, Nadel JA (2004) Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium. Thorax 59(11):992–996. doi:10.1136/thx.2003.018879

    Article  PubMed  PubMed Central  Google Scholar 

  62. Roedel EQ, Cafasso DE, Lee KW, Pierce LM (2012) Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles. Toxicol Appl Pharmacol 259(1):74–86. doi:10.1016/j.taap.2011.12.008

    Article  CAS  PubMed  Google Scholar 

  63. Jakiela B, Szczeklik W, Plutecka H, Sokolowska B, Mastalerz L, Sanak M, Bazan-Socha S, Szczeklik A, Musial J (2012) Increased production of IL-5 and dominant Th2-type response in airways of churg-strauss syndrome patients. Rheumatology 51(10):1887–1893. doi:10.1093/rheumatology/kes171

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eduardo Vargas.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, J.E., Porto, B.N., Puga, R. et al. Identifying a biomarker network for corticosteroid resistance in asthma from bronchoalveolar lavage samples. Mol Biol Rep 43, 697–710 (2016). https://doi.org/10.1007/s11033-016-4007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4007-x

Keywords

Navigation