Skip to main content
Log in

Novel insights into redox system and the mechanism of redox regulation

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In view of the critical role of redox system in numerous physiological and pathophysiological processes, it is important to clearly understand the family members and regulatory mechanism of redox system. In this work, we will systematically review the current data detailing the reactive oxygen species (ROS), enzymatic and non-enzymatic antioxidants and redox sensitive transcription factors and we give a brief description of redox-mediated epigenetic and post-translational regulation. We propose that the redox system functions as a “Redox Chain”, consisting of “ROS-generating Enzyme Chain”, “Combined Antioxidant Chain” and “Transcription Factor Chain”. We suggest that an individualized assessment of the redox status in the body should be conducted for the redox intervention of a patient. The strategy of intervention is to maintain redox homeostasis via either facilitation of ROS signaling or enhancement of antioxidant defense. These findings provide valuable new insights into redox system and open up new paths for the control of redox-related disorders

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

6PGD:

6-Phosphogluconate dehydrogenase

20-HETE:

20-Hydroxyeicosatetraenoic acid

AA:

Arachidonic acid

ADP:

Adenosine diphosphate

AREs:

Antioxidant response elements

ATP:

Adenosine triphosphate

CAT:

Catalase

CoQ:

Coenzyme Q

COXs:

Cyclooxygenases

CYPs:

Cytochrome P450 enzymes

Drp1:

Dynamin-related protein

EETs:

Epoxyeicosatrienoic acids

EGR2:

Early growth response 2

ER:

Endoplasmic reticulum

ETC:

Electron transport cascade

ETF-QO:

Electron transfer flavoprotein: ubiquinol oxidoreductase

FATP-1:

Fatty acid transporter-1

Fis1:

Fission 1 homologue protein

FoxO:

Forkhead box O

G6PDH:

Glucose-6-phosphate dehydrogenase

GCL:

Glutamate–cysteine ligase

GCLc:

Catalytic or heavy subunit

GCLm:

Modulatory or light subunit

GGT:

Γ-Glutamyl transpeptidase

GPD2:

FAD-linked glycerol-3-phosphate dehydrogenase

GPx:

GSH peroxidases

GR:

GSH reductase

Grxs:

Glutaredoxins

GS:

Glutathione synthase

GSH:

Glutathione

GSSG:

Oxidized form of GSH

GSSR:

Glutathionylated-cysteine derivative

GSTs:

Glutathione-S-transferases

HO:

Heme oxygenase

Keap1:

Kelch-like ECH-associated protein 1

KGDH:

Α-ketoglutarate dehydrogenase

LA:

Lipoic acid

LOX:

Lipoxygenases

MAO:

Monoamine oxidase

MAPKs:

Mitogen-activated protein kinase

Mfn2:

Mitofusin 2

MMO:

Microsomal monooxygenase

MO:

Monooxygenase

MTs:

Metallothioneins

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-κB:

Nuclear factor kappa-light-cascade-enhancer of activated B cells

NO:

Nitric oxide

NOS:

Nitric oxide synthases

NOXs:

NADPH oxidases

NQO1:

NAD(P)H:quinone oxidoreductase 1

Nrf2:

NFE2-related factor 2

OPA1:

Optic atrophy-1

OXPHOS:

Oxidative phosphorylation

Ox-PTMs:

Oxidative post-translational modifications

PGC-1α:

Peroxisome proliferatoractivated receptor-gamma coactivator-1α

PGF :

Prostaglandin F

PGs:

Prostaglandins

PGE2 :

Prostaglandin E2

PIG1-13:

P53-inducible genes 1-13

PPARγ:

Peroxisome proliferator-activated receptor γ

Prxs:

Peroxiredoxins

PTMs:

Post-translational modifications

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SeP:

Selenoprotein P

SHC1:

SHC-transforming protein 1

Shh:

Sonic hedgehog

SIRT:

Sirtuin

SOD:

Superoxide dismutase

SSAO:

Semicarbazide-sensitive amine oxidase

TCA:

Tricarboxylic acid cycle

TG:

Triglycerides

TNF-α:

Tumor necrosis factor-α

TrxR:

Thioredoxin reductase

Trxs:

Thioredoxins

TXNIP:

Thioredoxin interacting protein

UCPs:

Uncoupling proteins

UPR:

Uncoupling protein reaction

VC :

Vitamin C

VE :

Vitamin E

XDH:

Xanthine dehydrogenase

XO:

Xanthine oxidase

XOR:

Xanthine oxidoreductase

References

  1. Fenton HJH (1894) LXXIII-oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  2. May JM, de Haen C (1979) The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes. J Biol Chem 254:9017–9021

    CAS  PubMed  Google Scholar 

  3. Lawrence JC, Larner J Jr (1978) J. Activation of glycogen synthase in rat adipocytes by insulin and glucose involves increased glucose transport and phosphorylation. J Biol Chem 253:2104–2113

    CAS  PubMed  Google Scholar 

  4. Mukherjee SP, Lane RH, Lynn WS (1978) Endogenous hydrogen peroxide and peroxidative metabolism in adipocytes in response to insulin and sulfhydryl reagents. Biochem Pharmacol 27:2589–2594

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Tao L, Hai CX (2012) Redox-regulating role of insulin: the essence of insulin effect. Mol Cell Endocrinol 349:111–127

    Article  CAS  PubMed  Google Scholar 

  6. Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J, Chio II, Giannopoulou EG, Rago C et al (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350(6266):1391–1396

    Article  CAS  PubMed  Google Scholar 

  7. Watson JD (2014) Type 2 diabetes as a redox disease. Lancet 383:841–843

    Article  PubMed  Google Scholar 

  8. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468:1115–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, Surmeier DJ (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468:696–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun HJ, Zhao MX, Liu TY, Ren XS, Chen Q, Li YH, Kang YM, Zhu GQ (2016) Salusin-beta induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFkappaB pathway. Sci Rep 6:23596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang X, Liu JZ, Hu JX, Wu H, Li YL, Chen HL, Bai H, Hai CX (2011) ROS-activated p38 MAPK/ERK-Akt cascade plays a central role in palmitic acid-stimulated hepatocyte proliferation. Free Radical Bio Med 51:539–551

    Article  CAS  Google Scholar 

  12. Rudzka DA, Cameron JM, Olson MF (2015) Reactive oxygen species and hydrogen peroxide generation in cell migration. Commun Integr Biol 8:e1074360

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF et al (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  16. Goldstein BJ, Mahadev K, Wu X, Zhu L, Motoshima H (2005) Role of insulin-induced reactive oxygen species in the insulin signaling pathway. Antioxid Redox Signal 7:1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G, Lambeth JD, Goldstein BJ (2004) The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 24:1844–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163:560–569

    Article  CAS  PubMed  Google Scholar 

  19. Yee C, Yang W, Hekimi S (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157:897–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL (2010) Hyperoxia sensing: from molecular mechanisms to significance in disease. J Immunotoxicol 7:239–254

    Article  CAS  PubMed  Google Scholar 

  21. Gorlach A, Dimova EY, Petry A, Martinez-Ruiz A, Hernansanz-Agustin P, Rolo AP, Palmeira CM, Kietzmann T (2015) Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol 6:372–385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S (2013) The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med 65:1174–1194

    Article  CAS  PubMed  Google Scholar 

  23. Coates TD (2014) Physiology and pathophysiology of iron in hemoglobin-associated diseases. Free Radic Biol Med 72:23–40

    Article  CAS  PubMed  Google Scholar 

  24. Galaris D, Pantopoulos K (2008) Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 45:1–23

    Article  CAS  PubMed  Google Scholar 

  25. Soberman RJ (2003) The expanding network of redox signaling: new observations, complexities, and perspectives. J Clin Invest 111:571–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  PubMed  Google Scholar 

  27. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    Article  CAS  PubMed  Google Scholar 

  29. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Article  CAS  PubMed  Google Scholar 

  30. Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T (2000) Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 20:7311–7318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murphy M (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  32. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh G (2014) Mitochondrial FAD-linked Glycerol-3-phosphate dehydrogenase: a target for cancer therapeutics. Pharmaceuticals (Basel) 7:192–206

    Article  CAS  Google Scholar 

  34. Hail N Jr, Chen P, Kepa JJ, Bushman LR, Shearn C (2010) Dihydroorotate dehydrogenase is required for N-(4-hydroxyphenyl)retinamide-induced reactive oxygen species production and apoptosis. Free Radic Biol Med 49:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Watmough NJ, Frerman FE (2010) The electron transfer flavoprotein: ubiquinone oxidoreductases. Biochim Biophys Acta Bioenerg 1797:1910–1916

    Article  CAS  Google Scholar 

  36. Lenaz G (2012) Mitochondria and reactive oxygen species. Which role in physiology and pathology? Adv Exp Med Biol 942:93–136

    Article  CAS  PubMed  Google Scholar 

  37. Berniakovich I, Trinei M, Stendardo M, Migliaccio E, Minucci S, Bernardi P, Pelicci PG, Giorgio M (2008) p66Shc-generated oxidative signal promotes fat accumulation. J Biol Chem 283:34283–34293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mailloux RJ, Harper ME (2012) Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends Endocrinol Metab 23:451–458

    Article  CAS  PubMed  Google Scholar 

  39. Davydov DR (2001) Microsomal monooxygenase in apoptosis: another target for cytochrome c signaling? Trends Biochem Sci 26:155–160

    Article  CAS  PubMed  Google Scholar 

  40. Tormos KV, Anso E, Hamanaka RB, Eisenbart J, Joseph J, Kalyanaraman B, Chandel NS (2011) Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab 14:537–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yadav A, Agarwal S, Tiwari SK, Chaturvedi RK (2014) Mitochondria: prospective targets for neuroprotection in Parkinson’s disease. Curr Pharm Des 20:5558–5573

    Article  CAS  PubMed  Google Scholar 

  42. Apostolova N, Victor VM (2015) Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal 22:686–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brandes RP, Weissmann N, Schroder K (2014) Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med 76C:208–226

    Article  CAS  Google Scholar 

  44. Sirokmany G, Donko A, Geiszt M (2016) Nox/Duox family of NADPH oxidases: lessons from knockout mouse models. Trends Pharmacol Sci 37:318–327

    Article  CAS  PubMed  Google Scholar 

  45. Martyn KD, Frederick LM, Loehneysen KV, Dinauer MC, Knaus UG (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82

    Article  CAS  PubMed  Google Scholar 

  46. Takac I, Schröder K, Zhang L, Lardy B, Anilkumar N, Lambeth J, Shah A, Morel F, Brandes R (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 286:13304–13313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Altenhofer S, Kleikers PW, Radermacher KA, Scheurer P, Rob HJ, Schiffers P, Ho H, Wingler K, Schmidt HH (2012) The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 69:2327–2343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Robert AM, Robert L (2014) Xanthine oxido-reductase, free radicals and cardiovascular disease. A critical review. Pathol Oncol Res 20:1–10

    Article  CAS  PubMed  Google Scholar 

  49. Sanders SA, Eisenthal R, Harrison R (1997) NADH oxidase activity of human xanthine oxidoreductase–generation of superoxide anion. Eur J Biochem 245:541–548

    Article  CAS  PubMed  Google Scholar 

  50. Cantu-Medellin N, Kelley EE (2013) Xanthine oxidoreductase-catalyzed reduction of nitrite to nitric oxide: insights regarding where, when and how. Nitric Oxide 34:19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boueiz A, Damarla M, Hassoun PM (2008) Xanthine oxidoreductase in respiratory and cardiovascular disorders. Am J Physiol Lung Cell Mol Physiol 294:L830–L840

    Article  CAS  PubMed  Google Scholar 

  52. Moncada S, Palmer RMJ, Higgs EA (1991) Nitricoxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  53. Jay-Gerin JP, Ferradini C (2000) Are there protective enzymatic pathways to regulate high local nitric oxide (NO) concentrations in cells under stress conditions? Biochimie 82:161–166

    Article  CAS  PubMed  Google Scholar 

  54. Lundberg JO, Gladwin MT, Weitzberg E (2015) Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 14:623–641

    Article  CAS  PubMed  Google Scholar 

  55. Chen W, Lin YC, Ma XY, Jiang ZY, Lan SP (2014) High concentrations of genistein exhibit pro-oxidant effects in primary muscle cells through mechanisms involving 5-lipoxygenase-mediated production of reactive oxygen species. Food Chem Toxicol 67:72–79

    Article  PubMed  CAS  Google Scholar 

  56. Ha YJ, Seul HJ, Lee JR (2011) Ligation of CD40 receptor in human B lymphocytes triggers the 5-lipoxygenase pathway to produce reactive oxygen species and activate p38 MAPK. Exp Mol Med 43:101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chou DS, Hsiao G, Lai YA, Tsai YJ, Sheu JR (2009) Baicalein induces proliferation inhibition in B16F10 melanoma cells by generating reactive oxygen species via 12-lipoxygenase. Free Radic Biol Med 46:1197–1203

    Article  CAS  PubMed  Google Scholar 

  58. Svensson HA, Bengtsson T, Grenegard M, Lindstrom EG (2008) Platelets stimulate airway smooth muscle cell proliferation through mechanisms involving 5-lipoxygenase and reactive oxygen species. Platelets 19:528–536

    Article  CAS  Google Scholar 

  59. Kim C, Kim JY, Kim JH (2008) Cytosolic phospholipase A(2), lipoxygenase metabolites, and reactive oxygen species. BMB Rep 41:555–559

    Article  CAS  PubMed  Google Scholar 

  60. Cho KJ, Seo JM, Kim JH (2011) Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Mol Cells 32:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Othman A, Ahmad S, Megyerdi S, Mussell R, Choksi K, Maddipati KR, Elmarakby A, Rizk N, Al-Shabrawey M (2013) 12/15-Lipoxygenase-derived lipid metabolites induce retinal endothelial cell barrier dysfunction: contribution of NADPH oxidase. PLoS ONE 8:e57254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yun MR, Park HM, Seo KW, Lee SJ, Im DS, Kim CD (2010) 5-Lipoxygenase plays an essential role in 4-HNE-enhanced ROS production in murine macrophages via activation of NADPH oxidase. Free Radic Res 44:742–750

    Article  CAS  PubMed  Google Scholar 

  63. Czapski GA, Czubowicz K, Strosznajder RP (2012) Evaluation of the antioxidative properties of lipoxygenase inhibitors. Pharmacol Rep 64:1179–1188

    Article  CAS  PubMed  Google Scholar 

  64. Cole BK, Kuhn NS, Green-Mitchell SM, Leone KA, Raab RM, Nadler JL, Chakrabarti SK (2012) 12/15-Lipoxygenase signaling in the endoplasmic reticulum stress response. Am J Physiol Endocrinol Metab 302:E654–E665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sancho P, Martin-Sanz P, Fabregat I (2011) Reciprocal regulation of NADPH oxidases and the cyclooxygenase-2 pathway. Free Radic Biol Med 51:1789–1798

    Article  CAS  PubMed  Google Scholar 

  66. Kondo M, Oya-Ito T, Kumagai T, Osawa T, Uchida K (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress. J Biol Chem 276:12076–12083

    Article  CAS  PubMed  Google Scholar 

  67. Kim EH, Na HK, Kim DH, Park SA, Kim HN, Song NY, Surh YJ (2008) 15-Deoxy-Delta 12,14-prostaglandin J2 induces COX-2 expression through Akt-driven AP-1 activation in human breast cancer cells: a potential role of ROS. Carcinogenesis 29:688–695

    Article  CAS  PubMed  Google Scholar 

  68. Cederbaum AI, Wu D, Mari M, Bai J (2001) CYP2E1-dependent toxicity and oxidative stress in HepG2 cells. Free Radic Biol Med 31:1539–1543

    Article  CAS  PubMed  Google Scholar 

  69. Bansal S, Liu CP, Sepuri NB, Anandatheerthavarada HK, Selvaraj V, Hoek J, Milne GL, Guengerich FP, Avadhani NG (2010) Mitochondria-targeted cytochrome P450 2E1 induces oxidative damage and augments alcohol-mediated oxidative stress. J Biol Chem 285:24609–24619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ward NC, Puddey IB, Hodgson JM, Beilin LJ, Croft KD (2005) Urinary 20-hydroxyeicosatetraenoic acid excretion is associated with oxidative stress in hypertensive subjects. Free Radic Biol Med 38:1032–1036

    Article  CAS  PubMed  Google Scholar 

  71. Han Y, Zhao H, Tang H, Li X, Tan J, Zeng Q, Sun C (2013) 20-Hydroxyeicosatetraenoic acid mediates isolated heart ischemia/reperfusion injury by increasing NADPH oxidase-derived reactive oxygen species production. Circ J 77:1807–1816

    Article  CAS  PubMed  Google Scholar 

  72. Zeng Q, Han Y, Bao Y, Li W, Li X, Shen X, Wang X, Yao F, O’Rourke ST, Sun C (2010) 20-HETE increases NADPH oxidase-derived ROS production and stimulates the L-type Ca2+ channel via a PKC-dependent mechanism in cardiomyocytes. Am J Physiol Heart Circ Physiol 299:H1109–H1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Eid S, Maalouf R, Jaffa AA, Nassif J, Hamdy A, Rashid A, Ziyadeh FN, Eid AA (2013) 20-HETE and EETs in diabetic nephropathy: a novel mechanistic pathway. PLoS ONE 8:e70029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164:341–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bhandary B, Marahatta A, Kim HR, Chae HJ (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14:434–456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21:396–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Santos CX, Tanaka LY, Wosniak J, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11:2409–2427

    Article  CAS  PubMed  Google Scholar 

  78. Kim HR, Lee GH, Cho EY, Chae SW, Ahn T, Chae HJ (2009) Bax inhibitor 1 regulates ER-stress-induced ROS accumulation through the regulation of cytochrome P450 2E1. J Cell Sci 122:1126–1133

    Article  CAS  PubMed  Google Scholar 

  79. Nieto N, Friedman SL, Cederbaum AI (2002) Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome P450 2E1-derived reactive oxygen species. Hepatology 35:62–73

    Article  CAS  PubMed  Google Scholar 

  80. Zangar RC, Davydov DR, Verma S (2004) Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol 199:316–331

    Article  CAS  PubMed  Google Scholar 

  81. Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21:396–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  83. Govatati S, Malempati S, Saradamma B, Divyamaanasa D, Naidu BP, Bramhachari PV, Narayana N, Shivaji S, Bhanoori M, Tamanam RR et al (2016) Manganese-superoxide dismutase (Mn-SOD) overexpression is a common event in colorectal cancers with mitochondrial microsatellite instability. Tumour Biol. doi:10.1007/s13277-016-4918-0

    PubMed  Google Scholar 

  84. Batinic-Haberle I, Tovmasyan A, Roberts ER, Vujaskovic Z, Leong KW, Spasojevic I (2014) SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 20:2372–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Houldsworth A, Hodgkinson A, Shaw S, Millward A, Demaine AG (2015) Polymorphic differences in the SOD-2 gene may affect the pathogenesis of nephropathy in patients with diabetes and diabetic complications. Gene 569:41–45

    Article  CAS  PubMed  Google Scholar 

  86. Doddigarla Z, Parwez I, Ahmad J (2015) Correlation of serum chromium, zinc, magnesium and SOD levels with HbA1c in type 2 diabetes: a cross sectional analysis. Diabetes Metab Syndr. doi:10.1016/j.dsx.2015.10.008

    PubMed  Google Scholar 

  87. Massaad CA, Washington TM, Pautler RG, Klann E (2009) Overexpression of SOD-2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 106:13576–13581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Baumgart K, Simkova V, Wagner F, Weber S, Georgieff M, Radermacher P, Albuszies G, Barth E (2009) Effect of SOD-1 over-expression on myocardial function during resuscitated murine septic shock. Intensive Care Med 35:344–349

    Article  CAS  PubMed  Google Scholar 

  89. Thomas R, Sharifi N (2012) SOD mimetics: a novel class of androgen receptor inhibitors that suppresses castration-resistant growth of prostate cancer. Mol Cancer Ther 11:87–97

    Article  CAS  PubMed  Google Scholar 

  90. Batinic-Haberle I (2011) SOD enzymes and their mimics in cancer: pro vs anti-oxidative mode of action. Part I. Anticancer Agents Med Chem 11:172–174

    Article  CAS  PubMed  Google Scholar 

  91. Stancic A, Otasevic V, Jankovic A, Vucetic M, Ivanovic-Burmazovic I, Filipovic MR, Korac A, Markelic M, Velickovic K, Golic I et al (2013) Molecular basis of hippocampal energy metabolism in diabetic rats: the effects of SOD mimic. Brain Res Bull 99:27–33

    Article  CAS  PubMed  Google Scholar 

  92. Bognar Z, Kalai T, Palfi A, Hanto K, Bognar B, Mark L, Szabo Z, Tapodi A, Radnai B, Sarszegi Z et al (2006) A novel SOD-mimetic permeability transition inhibitor agent protects ischemic heart by inhibiting both apoptotic and necrotic cell death. Free Radic Biol Med 41:835–848

    Article  CAS  PubMed  Google Scholar 

  93. Glorieux C, Zamocky M, Sandoval JM, Verrax J, Calderon PB (2015) Regulation of catalase expression in healthy and cancerous cells. Free Radic Biol Med 87:84–97

    Article  CAS  PubMed  Google Scholar 

  94. Hebert-Schuster M, Fabre EE, Nivet-Antoine V (2012) Catalase polymorphisms and metabolic diseases. Curr Opin Clin Nutr Metab Care 15:397–402

    Article  CAS  PubMed  Google Scholar 

  95. Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87

    Article  CAS  PubMed  Google Scholar 

  96. Tavakoli S, Asmis R (2012) Reactive oxygen species and thiol redox signaling in the macrophage biology of atherosclerosis. Antioxid Redox Signal 17:1785–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lu SC (1830) Glutathione synthesis. Biochim Biophys Acta 2013:3143–3153

    Google Scholar 

  98. Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med 30:1–12

    Article  CAS  Google Scholar 

  99. Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502

    Article  CAS  PubMed  Google Scholar 

  100. Baudouin-Cornu P, Lagniel G, Kumar C, Huang ME, Labarre J (2012) Glutathione degradation is a key determinant of glutathione homeostasis. J Biol Chem 287:4552–4561

    Article  CAS  PubMed  Google Scholar 

  101. Toppo S, Vanin S, Bosello V, Tosatto SC (2008) Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid Redox Signal 10:1501–1514

    Article  CAS  PubMed  Google Scholar 

  102. Ho YS, Magnenat JL, Bronson RT, Cao J, Gargano M, Sugawara M, Funk CD (1997) Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem 272:16644–16651

    Article  CAS  PubMed  Google Scholar 

  103. Chu FF, Doroshow JH, Esworthy RS (1993) Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase. GSHPx-GI. J Biol Chem 268:2571–2576

    CAS  PubMed  Google Scholar 

  104. Takahashi K, Avissar N, Whitin J, Cohen H (1987) Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme. Arch Biochem Biophys 256:677–686

    Article  CAS  PubMed  Google Scholar 

  105. Yoshimura S, Watanabe K, Suemizu H, Onozawa T, Mizoguchi J, Tsuda K, Hatta H, Moriuchi T (1991) Tissue specific expression of the plasma glutathione peroxidase gene in rat kidney. J Biochem 109:918–923

    CAS  PubMed  Google Scholar 

  106. Schneider M, Forster H, Boersma A, Seiler A, Wehnes H, Sinowatz F, Neumuller C, Deutsch MJ, Walch A, Hrabe DAM et al (2009) Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J 23:3233–3242

    Article  CAS  PubMed  Google Scholar 

  107. Imai H, Hakkaku N, Iwamoto R, Suzuki J, Suzuki T, Tajima Y, Konishi K, Minami S, Ichinose S, Ishizaka K et al (2009) Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J Biol Chem 284:32522–32532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, Garrel C, Saez F, Cadet R, Henry-Berger J et al (2009) Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest 119:2074–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Brigelius-Flohe R (2006) Glutathione peroxidases and redox-regulated transcription factors. Biol Chem 387:1329–1335

    Article  CAS  PubMed  Google Scholar 

  110. Nguyen VD, Saaranen MJ, Karala AR, Lappi AK, Wang L, Raykhel IB, Alanen HI, Salo KE, Wang CC, Ruddock LW (2011) Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation. J Mol Biol 406:503–515

    Article  CAS  PubMed  Google Scholar 

  111. Wei PC, Hsieh YH, Su MI, Jiang X, Hsu PH, Lo WT, Weng JY, Jeng YM, Wang JM, Chen PL et al (2012) Loss of the oxidative stress sensor NPGPx compromises GRP78 chaperone activity and induces systemic disease. Mol Cell 48:747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Maiorino M, Ursini F, Bosello V, Toppo S, Tosatto SC, Mauri P, Becker K, Roveri A, Bulato C, Benazzi L et al (2007) The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases. J Mol Biol 365:1033–1046

    Article  CAS  PubMed  Google Scholar 

  113. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  CAS  PubMed  Google Scholar 

  114. Chen YJ, Lu CT, Lee TY (2014) dbGSH: a database of S-glutathionylation. Bioinformatics 30:2386–2388

    Article  CAS  PubMed  Google Scholar 

  115. Aquilano K, Baldelli S, Cardaci S, Rotilio G, Ciriolo MR (2011) Nitric oxide is the primary mediator of cytotoxicity induced by GSH depletion in neuronal cells. J Cell Sci 124:1043–1054

    Article  CAS  PubMed  Google Scholar 

  116. Aquilano K, Baldelli S, Pagliei B, Cannata SM, Rotilio G, Ciriolo MR (2013) p53 orchestrates the PGC-1alpha-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal 18:386–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sengupta R, Holmgren A (2013) Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid Redox Signal 18:259–269

    Article  CAS  PubMed  Google Scholar 

  118. Funato Y, Miki H (2007) Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxid Redox Signal 9:1035–1057

    Article  CAS  PubMed  Google Scholar 

  119. Patwari P, Higgins LJ, Chutkow WA, Yoshioka J, Lee RT (2006) The interaction of thioredoxin with Txnip. Evidence for formation of a mixed disulfide by disulfide exchange. J Biol Chem 281:21884–21891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chutkow WA, Lee RT (2011) Thioredoxin regulates adipogenesis through thioredoxin-interacting protein (Txnip) protein stability. J Biol Chem 286:29139–29145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rhee SG, Woo HA, Kil IS, Bae SH (2012) Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem 287:4403–4410

    Article  CAS  PubMed  Google Scholar 

  122. Tan SX, Greetham D, Raeth S, Grant CM, Dawes IW, Perrone GG (2010) The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J Biol Chem 285:6118–6126

    Article  CAS  PubMed  Google Scholar 

  123. Du Y, Zhang H, Lu J, Holmgren A (2012) Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose. J Biol Chem 287:38210–38219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Johansson C, Lillig CH, Holmgren A (2004) Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J Biol Chem 279:7537–7543

    Article  CAS  PubMed  Google Scholar 

  125. Ren P, Ye H, Dai L, Liu M, Liu X, Chai Y, Shao Q, Li Y, Lei N, Peng B et al (2013) Peroxiredoxin 1 is a tumor-associated antigen in esophageal squamous cell carcinoma. Oncol Rep 30:2297–2303

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhu H, Santo A, Li Y (2012) The antioxidant enzyme peroxiredoxin and its protective role in neurological disorders. Exp Biol Med (Maywood) 237:143–149

    Article  CAS  Google Scholar 

  127. Holmgren A (1979) Glutathione-dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxin. J Biol Chem 254:3672–3678

    CAS  PubMed  Google Scholar 

  128. Lillig CH, Berndt C, Vergnolle O, Lonn ME, Hudemann C, Bill E, Holmgren A (2005) Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc Natl Acad Sci USA 102:8168–8173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chertkov JL, Jiang S, Lutton JD, Levere RD, Abraham NG (1991) Hemin stimulation of hemopoiesis in murine long-term bone marrow culture. Exp Hematol 19:905–909

    CAS  PubMed  Google Scholar 

  130. Kikuchi G, Yoshida T, Noguchi M (2005) Heme oxygenase and heme degradation. Biochem Biophys Res Commun 338:558–567

    Article  CAS  PubMed  Google Scholar 

  131. Ollinger R, Yamashita K, Bilban M, Erat A, Kogler P, Thomas M, Csizmadia E, Usheva A, Margreiter R, Bach FH (2007) Bilirubin and biliverdin treatment of atherosclerotic diseases. Cell Cycle 6:39–43

    Article  PubMed  Google Scholar 

  132. Kronke G, Kadl A, Ikonomu E, Bluml S, Furnkranz A, Sarembock IJ, Bochkov VN, Exner M, Binder BR, Leitinger N (2007) Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol 27:1276–1282

    Article  PubMed  CAS  Google Scholar 

  133. Turkseven S, Kruger A, Mingone CJ, Kaminski P, Inaba M, Rodella LF, Ikehara S, Wolin MS, Abraham NG (2005) Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes. Am J Physiol Heart Circ Physiol 289:H701–H707

    Article  CAS  PubMed  Google Scholar 

  134. Turkseven S, Drummond G, Rezzani R, Rodella L, Quan S, Ikehara S, Abraham NG (2007) Impact of silencing HO-2 on EC-SOD and the mitochondrial signaling pathway. J Cell Biochem 100:815–823

    Article  CAS  PubMed  Google Scholar 

  135. Abraham NG, Junge JM, Drummond GS (2016) Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci 37:17–36

    Article  CAS  PubMed  Google Scholar 

  136. Dinkova-Kostova AT, Talalay P (2010) NAD(P)H:quinone accept or oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 501:116–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Park J, Rho HK, Kim KH, Choe SS, Lee YS, Kim JB (2005) Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol Cell Biol 25:5146–5157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hill KE, Zhou J, McMahan WJ, Motley AK, Atkins JF, Gesteland RF, Burk RF (2003) Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 278:13640–13646

    Article  CAS  PubMed  Google Scholar 

  139. Kabuyama Y, Oshima K, Kitamura T, Homma M, Yamaki J, Munakata M, Homma Y (2007) Involvement of selenoprotein P in the regulation of redox balance and myofibroblast viability in idiopathic pulmonary fibrosis. Genes Cells 12:1235–1244

    Article  CAS  PubMed  Google Scholar 

  140. Wang X, Zhang W, Chen H, Liao N, Wang Z, Zhang X, Hai C (2014) High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol Lett 224:16–23

    Article  CAS  PubMed  Google Scholar 

  141. Steinbrenner H, Bilgic E, Alili L, Sies H, Brenneisen P (2006) Selenoprotein P protects endothelial cells from oxidative damage by stimulation of glutathione peroxidase expression and activity. Free Radic Res 40:936–943

    Article  CAS  PubMed  Google Scholar 

  142. Steinbrenner H, Alili L, Bilgic E, Sies H, Brenneisen P (2006) Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radic Biol Med 40:1513–1523

    Article  CAS  PubMed  Google Scholar 

  143. Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    Article  CAS  PubMed  Google Scholar 

  144. Steven RD, Robert JC (2000) Metallothionein expression in animals: a physiological perspectuve on function. J Nutr 130:1085–1088

    Google Scholar 

  145. Futakawa N, Kondoh M, Ueda S, Higashimoto M, Takiguchi M, Suzuki S, Sato M (2006) Involvement of oxidative stress in the synthesis of metallothionein induced by mitochondrial inhibitors. Biol Pharm Bull 29:2016–2020

    Article  CAS  PubMed  Google Scholar 

  146. Ye B, Maret W, Vallee BL (2001) Zinc metallothionein imported into liver mitochondria modulates respiration. Proc Natl Acad Sci USA 98:2317–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Moi P, Chan K, Asunis I, Cao A, Kan YW (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA 91:9926–9930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sekhar KR, Yan XX, Freeman ML (2002) Nrf2 degradation by the ubiquitin proteasome pathway is inhibited by KIAA0132, the human homolog to INrf2. Oncogene 21:6829–6834

    Article  CAS  PubMed  Google Scholar 

  149. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y, Eguchi M, Wada Y, Kumagai Y, Yamamoto M (2009) The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol 29:493–502

    Article  CAS  PubMed  Google Scholar 

  151. Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:123–140

    Article  CAS  PubMed  Google Scholar 

  152. Motohashi H, O’Connor T, Katsuoka F, Engel JD, Yamamoto M (2002) Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294:1–12

    Article  CAS  PubMed  Google Scholar 

  153. Sporn MB, Liby KT (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 12:564–571

    Article  CAS  PubMed  Google Scholar 

  154. Kwak MK, Itoh K, Yamamoto M, Kensler TW (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol 22:2883–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kay HY, Kim WD, Hwang SJ, Choi HS, Gilroy RK, Wan YJ, Kim SG (2011) Nrf2 inhibits LXRalpha-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid Redox Signal 15:2135–2146

    Article  CAS  PubMed  Google Scholar 

  156. Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y (2005) Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 579:3029–3036

    Article  CAS  PubMed  Google Scholar 

  157. Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N, Williams C, Risingsong R, Honda T, Gribble GW et al (2005) Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc Natl Acad Sci USA 102:4584–4589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT (2010) Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 13:1713–1748

    Article  CAS  PubMed  Google Scholar 

  159. Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46:443–453

    Article  CAS  PubMed  Google Scholar 

  160. Tanito M, Agbaga MP, Anderson RE (2007) Upregulation of thioredoxin system via Nrf2-antioxidant responsive element pathway in adaptive-retinal neuroprotection in vivo and in vitro. Free Radic Biol Med 42:1838–1850

    Article  CAS  PubMed  Google Scholar 

  161. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  CAS  PubMed  Google Scholar 

  162. Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW (2003) Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 278:8135–8145

    Article  CAS  PubMed  Google Scholar 

  163. Dong J, Sulik KK, Chen SY (2008) Nrf2-mediated transcriptional induction of antioxidant response in mouse embryos exposed to ethanol in vivo: implications for the prevention of fetal alcohol spectrum disorders. Antioxid Redox Signal 10:2023–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Favreau LV, Pickett CB (1995) The rat quinone reductase antioxidant response element. Identification of the nucleotide sequence required for basal and inducible activity and detection of antioxidant response element-binding proteins in hepatoma and non-hepatoma cell lines. J Biol Chem 270:24468–24474

    Article  CAS  PubMed  Google Scholar 

  165. Galloway DC, Blake DG, McLellan LI (1999) Regulation of gamma-glutamylcysteine synthetase regulatory subunit (GLCLR) gene expression: identification of the major transcriptional start site in HT29 cells. Biochim Biophys Acta 1446:47–56

    Article  CAS  PubMed  Google Scholar 

  166. Hintze KJ, Keck AS, Finley JW, Jeffery EH (2003) Induction of hepatic thioredoxin reductase activity by sulforaphane, both in Hepa1c1c7 cells and in male Fisher 344 rats. J Nutr Biochem 14:173–179

    Article  CAS  PubMed  Google Scholar 

  167. Ishii T, Itoh K, Sato H, Bannai S (1999) Oxidative stress-inducible proteins in macrophages. Free Radic Res 31:351–355

    Article  CAS  PubMed  Google Scholar 

  168. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  CAS  PubMed  Google Scholar 

  169. Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260

    Article  CAS  PubMed  Google Scholar 

  170. Rushmore TH, Pickett CB (1990) Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J Biol Chem 265:14648–14653

    CAS  PubMed  Google Scholar 

  171. Wang B, Williamson G (1994) Detection of a nuclear protein which binds specifically to the antioxidant responsive element (ARE) of the human NAD(P) H:quinone oxidoreductase gene. Biochim Biophys Acta 1219:645–652

    Article  PubMed  Google Scholar 

  172. Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y (2005) Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 579:3029–3036

    Article  CAS  PubMed  Google Scholar 

  173. Zhang HS, Wang SQ (2007) Nrf2 is involved in the effect of tanshinone IIA on intracellular redox status in human aortic smooth muscle cells. Biochem Pharmacol 73:1358–1366

    Article  CAS  PubMed  Google Scholar 

  174. MacLeod AK, McMahon M, Plummer SM, Higgins LG, Penning TM, Igarashi K, Hayes JD (2009) Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1-NRF2 pathway, and not the BACH1-NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis 30:1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, Chen W, Yi X, Zheng W, Wondrak GT et al (2008) Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:1235–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Jiang XY, Lu DB, Jiang YZ, Zhou LN, Cheng LQ, Chen B (2013) PGC-1alpha prevents apoptosis in adipose-derived stem cells by reducing reactive oxygen species production in a diabetic microenvironment. Diabetes Res Clin Pract 100:368–375

    Article  CAS  PubMed  Google Scholar 

  177. Austin S, Klimcakova E, St-Pierre J (2011) Impact of PGC-1alpha on the topology and rate of superoxide production by the mitochondrial electron transport chain. Free Radic Biol Med 51:2243–2248

    Article  CAS  PubMed  Google Scholar 

  178. Huang PI, Chou YC, Chang YL, Chien Y, Chen KH, Song WS, Peng CH, Chang CH, Lee SD, Lu KH et al (2011) Enhanced differentiation of three-gene-reprogrammed induced pluripotent stem cells into adipocytes via adenoviral-mediated PGC-1alpha overexpression. Int J Mol Sci 12:7554–7568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Huang PI, Chen YC, Chen LH, Juan CC, Ku HH, Wang ST, Chiou SH, Chiou GY, Chi CW, Hsu CC et al (2011) PGC-1alpha mediates differentiation of mesenchymal stem cells to brown adipose cells. J ATHEROSCLER THROMB 18:966–980

    Article  CAS  PubMed  Google Scholar 

  180. Baldelli S, Aquilano K, Ciriolo MR (2014) PGC-1alpha buffers ROS-mediated removal of mitochondria during myogenesis. Cell Death Dis 5:e1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Yu W, Cao D, Zhou H, Hu Y, Guo T (2015) PGC-1alpha is responsible for survival of multiple myeloma cells under hyperglycemia and chemotherapy. Oncol Rep 33:2086–2092

    PubMed  Google Scholar 

  182. Cao D, Jin L, Zhou H, Yu W, Hu Y, Guo T (2015) Inhibition of PGC-1alpha after chemotherapy-mediated insult confines multiple myeloma cell survival by affecting ROS accumulation. Oncol Rep 33:899–904

    CAS  PubMed  Google Scholar 

  183. Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M (2005) PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res 66:562–573

    Article  CAS  PubMed  Google Scholar 

  184. Sanchez-Ramos C, Tierrez A, Fabregat-Andres O, Wild B, Sanchez-Cabo F, Arduini A, Dopazo A, Monsalve M (2011) PGC-1alpha regulates translocated in liposarcoma activity: role in oxidative stress gene expression. Antioxid Redox Signal 15:325–337

    Article  CAS  PubMed  Google Scholar 

  185. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  PubMed  Google Scholar 

  186. Geng T, Li P, Yin X, Yan Z (2011) PGC-1alpha promotes nitric oxide antioxidant defenses and inhibits FOXO signaling against cardiac cachexia in mice. Am J Pathol 178:1738–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hu L, Zhou L, Wu X, Liu C, Fan Y, Li Q (2014) Hypoxic preconditioning protects cardiomyocytes against hypoxia/reoxygenation injury through AMPK/eNOS/PGC-1alpha signaling pathway. Int J Clin Exp Pathol 7:7378–7388

    PubMed  PubMed Central  Google Scholar 

  188. Davies NA, Watkeys L, Butcher L, Potter S, Hughes MG, Moir H, Morris K, Thomas AW, Webb R (2015) The contributions of oxidative stress, oxidised lipoproteins and AMPK towards exercise-associated PPARgamma signalling within human monocytic cells. Free Radic Res 49:45–56

    Article  CAS  PubMed  Google Scholar 

  189. Irrcher I, Ljubicic V, Hood DA (2009) Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells. Am J Physiol Cell Physiol 296:C116–C123

    Article  CAS  PubMed  Google Scholar 

  190. Borniquel S, Valle I, Cadenas S, Lamas S, Monsalve M (2006) Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1alpha. FASEB J 20:1889–1891

    Article  CAS  PubMed  Google Scholar 

  191. Budanov AV (2014) The role of tumor suppressor p53 in the antioxidant defense and metabolism. Subcell Biochem 85:337–358

    Article  PubMed  PubMed Central  Google Scholar 

  192. Maillet A, Pervaiz S (2012) Redox regulation of p53, redox effectors regulated by p53: a subtle balance. Antioxid Redox Signal 16:1285–1294

    Article  CAS  PubMed  Google Scholar 

  193. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    Article  CAS  PubMed  Google Scholar 

  194. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Italiano D, Lena AM, Melino G, Candi E (2012) Identification of NCF2/p67phox as a novel p53 target gene. Cell Cycle 11:4589–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S et al (2004) p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res 64:2350–2356

    Article  CAS  PubMed  Google Scholar 

  197. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860

    Article  CAS  PubMed  Google Scholar 

  198. Brynczka C, Labhart P, Merrick BA (2007) NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation. BMC Genom 8:139

    Article  CAS  Google Scholar 

  199. Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600

    Article  CAS  PubMed  Google Scholar 

  200. Kramer HF, Goodyear LJ (1985) Exercise, MAPK, and NF-kappaB signaling in skeletal muscle. J Appl Physiol 2007(103):388–395

    Google Scholar 

  201. Kabe Y, Ando K, Hirao S, Yoshida M, Handa H (2005) Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7:395–403

    Article  CAS  PubMed  Google Scholar 

  202. Zhang X, Liu J, Pang X, Zhao J, Wang S, Wu D (2014) Aldosterone induces C-reactive protein expression via MR-ROS-MAPK-NF-kappaB signal pathway in rat vascular smooth muscle cells. Mol Cell Endocrinol 395:61–68

    Article  CAS  PubMed  Google Scholar 

  203. Jin X, Song L, Liu X, Chen M, Li Z, Cheng L, Ren H (2014) Protective efficacy of vitamins C and E on p, p’-DDT-induced cytotoxicity via the ROS-mediated mitochondrial pathway and NF-kappaB/FasL pathway. PLoS One 9:e113257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Kim SU, Park YH, Min JS, Sun HN, Han YH, Hua JM, Lee TH, Lee SR, Chang KT, Kang SW et al (2013) Peroxiredoxin I is a ROS/p38 MAPK-dependent inducible antioxidant that regulates NF-kappaB-mediated iNOS induction and microglial activation. J Neuroimmunol 259:26–36

    Article  CAS  PubMed  Google Scholar 

  205. Anrather J, Racchumi G, Iadecola C (2006) NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem 281:5657–5667

    Article  CAS  PubMed  Google Scholar 

  206. Pande D, Karki K, Negi R, Khanna S, Khanna RS, Khanna HD (2013) NF-kappaB p65 subunit DNA-binding activity: association with depleted antioxidant levels in breast carcinoma patients. Cell Biochem Biophys 67:1275–1281

    Article  CAS  PubMed  Google Scholar 

  207. Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    Article  CAS  PubMed  Google Scholar 

  208. Allan ME, Storey KB (2012) Expression of NF-kappaB and downstream antioxidant genes in skeletal muscle of hibernating ground squirrels, spermophilus tridecemlineatus. Cell Biochem Funct 30:166–174

    Article  CAS  PubMed  Google Scholar 

  209. Kaur P, Kaur G, Bansal MP (2006) Tertiary-butyl hydroperoxide induced oxidative stress and male reproductive activity in mice: role of transcription factor NF-kappaB and testicular antioxidant enzymes. Reprod Toxicol 22:479–484

    Article  CAS  PubMed  Google Scholar 

  210. Katoh M, Katoh M (2004) Human FOX gene family (review). Int J Oncol 25:1495–1500

    CAS  PubMed  Google Scholar 

  211. de Keizer PL, Burgering BM, Dansen TB (2011) Forkhead box o as a sensor, mediator, and regulator of redox signaling. Antioxid Redox Signal 14:1093–1106

    Article  PubMed  CAS  Google Scholar 

  212. Calnan DR, Brunet A (2008) The FoxO code. ONCOGENE 27:2276–2288

    Article  CAS  PubMed  Google Scholar 

  213. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC et al (2008) ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10:138–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13:1385–1393

    CAS  PubMed  Google Scholar 

  215. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321

    Article  CAS  PubMed  Google Scholar 

  216. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283

    Article  CAS  PubMed  Google Scholar 

  217. Chiribau CB, Cheng L, Cucoranu IC, Yu YS, Clempus RE, Sorescu D (2008) FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblasts. J Biol Chem 283:8211–8217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Akasaki Y, Alvarez-Garcia O, Saito M, Carames B, Iwamoto Y, Lotz MK (2014) FoxO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis Rheumatol 66:3349–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Higuchi M, Dusting GJ, Peshavariya H, Jiang F, Hsiao ST, Chan EC, Liu GS (2013) Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and Forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells Dev 22:878–888

    Article  CAS  PubMed  Google Scholar 

  220. Cherry AD, Suliman HB, Bartz RR, Piantadosi CA (2014) Peroxisome proliferator-activated receptor γ co-activator 1-α as a critical co-activator of the murine hepatic oxidative stress response and mitochondrial biogenesis in Staphylococcus aureus sepsis. J Biol Chem 289:41–52

    Article  CAS  PubMed  Google Scholar 

  221. Sen N, Satija YK, Das S (2011) PGC-1α, a Key Modulator of p53, promotes cell survival upon metabolic stress. Mol Cell 44:621–634

    Article  CAS  PubMed  Google Scholar 

  222. Athale J, Ulrich A, MacGarvey NC, Bartz RR, Welty-Wolf KE, Suliman HB, Piantadosi CA (2012) Nrf2 promotes alveolar mitochondrial biogenesis and resolution of lung injury in Staphylococcus aureus pneumonia in mice. Free Radic Biol Med 53:1584–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, Zhang DD (2009) Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell 34:663–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kalo E, Kogan-Sakin I, Solomon H, Bar-Nathan E, Shay M, Shetzer Y, Dekel E, Goldfinger N, Buganim Y, Stambolsky P et al (2012) Mutant p53R273H attenuates the expression of phase 2 detoxifying enzymes and promotes the survival of cells with high levels of reactive oxygen species. J Cell Sci 125:5578–5586

    Article  CAS  PubMed  Google Scholar 

  225. Kim DH, Song NY, Kim EH, Na HK, Joe Y, Chung HT, Surh YJ (2014) 15-Deoxy-delta 12,14-prostaglandin J(2) induces p53 expression through Nrf2-mediated upregulation of heme oxygenase-1 in human breast cancer cells. Free Radic Res 48:1018–1027

    Article  CAS  PubMed  Google Scholar 

  226. Asher G, Lotem J, Cohen B, Sachs L, Shaul Y (2001) Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc Natl Acad Sci USA 98:1188–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. You A, Nam CW, Wakabayashi N, Yamamoto M, Kensler TW, Kwak MK (2011) Transcription factor Nrf2 maintains the basal expression of Mdm2: an implication of the regulation of p53 signaling by Nrf2. Arch Biochem Biophys 507:356–364

    Article  CAS  PubMed  Google Scholar 

  228. Faraonio R, Vergara P, Di Marzo D, Pierantoni MG, Napolitano M, Russo T, Cimino F (2006) p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J Biol Chem 281:39776–39784

    Article  CAS  PubMed  Google Scholar 

  229. Chen W, Jiang T, Wang H, Tao S, Lau A, Fang D, Zhang DD (2012) Does Nrf2 contribute to p53-mediated control of cell survival and death? Antioxid Redox Signal 17:1670–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. George LE, Lokhandwala MF, Asghar M (2012) Novel role of NF-kappaB-p65 in antioxidant homeostasis in human kidney-2 cells. Am J Physiol Renal Physiol 302:F1440–F1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Liu L, Shang Y, Li M, Han X, Wang J, Wang J (2015) Curcumin ameliorates asthmatic airway inflammation by activating Nrf2/HO-1 signaling pathway. Clin Exp Pharmacol Physiol 42(5):520–529

    Article  PubMed  CAS  Google Scholar 

  232. Cuadrado A, Martin-Moldes Z, Ye J, Lastres-Becker I (2014) Transcription factors NRF2 and NF-kappaB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem 289:15244–15258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Storci G, Sansone P, Mari S, D’Uva G, Tavolari S, Guarnieri T, Taffurelli M, Ceccarelli C, Santini D, Chieco P et al (2010) TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol 225:682–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Trebec-Reynolds DP, Voronov I, Heersche JN, Manolson MF (2010) VEGF-A expression in osteoclasts is regulated by NF-kappaB induction of HIF-1alpha. J Cell Biochem 110:343–351

    CAS  PubMed  Google Scholar 

  235. Sun L, Zang WJ, Wang H, Zhao M, Yu XJ, He X, Miao Y, Zhou J (2014) Acetylcholine promotes ROS detoxification against hypoxia/reoxygenation-induced oxidative stress through FoxO3a/PGC-1alpha dependent superoxide dismutase. Cell Physiol Biochem 34:1614–1625

    Article  CAS  PubMed  Google Scholar 

  236. Yu DA, Yoon J, Ko YS, Park J, Kim SY, Kim MA, Kim JH, Jung J, Cheon Y, Lee HS et al (2014) Forkhead transcription factor FOXO1 inhibits nuclear factor-kappaB in gastric cancer. APMIS 122:848–855

    Article  CAS  PubMed  Google Scholar 

  237. Zhou W, Cao Q, Peng Y, Zhang QJ, Castrillon DH, DePinho RA, Liu ZP (2009) FoxO4 inhibits NF-kappaB and protects mice against colonic injury and inflammation. Gastroenterology 137:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Salminen A, Ojala J, Huuskonen J, Kauppinen A, Suuronen T, Kaarniranta K (2008) Interaction of aging-associated signaling cascades: inhibition of NF-kappaB signaling by longevity factors FoxOs and SIRT1. Cell Mol Life Sci 65:1049–1058

    Article  CAS  PubMed  Google Scholar 

  239. Kim DH, Kim JY, Yu BP, Chung HY (2008) The activation of NF-kappaB through Akt-induced FOXO1 phosphorylation during aging and its modulation by calorie restriction. Biogerontology 9:33–47

    Article  CAS  PubMed  Google Scholar 

  240. Li Z, Zhang H, Chen Y, Fan L, Fang J (2012) Forkhead transcription factor FOXO3a protein activates nuclear factor kappaB through B-cell lymphoma/leukemia 10 (BCL10) protein and promotes tumor cell survival in serum deprivation. J Biol Chem 287:17737–17745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Huang J, Yue S, Ke B, Zhu J, Shen XD, Zhai Y, Yamamoto M, Busuttil RW, Kupiec-Weglinski JW (2014) Nuclear factor erythroid 2-related factor 2 regulates toll-like receptor 4 innate responses in mouse liver ischemia-reperfusion injury through Akt-forkhead box protein O1 signaling network. Transplantation 98:721–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Zhang C, Shu L, Kong AT (2015) MicroRNAs: new players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways. Curr Pharmacol Rep 1:21–30

    Article  PubMed  PubMed Central  Google Scholar 

  243. Peng DF, Razvi M, Chen H, Washington K, Roessner A, Schneider-Stock R, El-Rifai W (2009) DNA hypermethylation regulates the expression of members of the Mu-class glutathione S-transferases and glutathione peroxidases in Barrett’s adenocarcinoma. Gut 58:5–15

    Article  CAS  PubMed  Google Scholar 

  244. Ren RJ, Dammer EB, Wang G, Seyfried NT, Levey AI (2014) Proteomics of protein post-translational modifications implicated in neurodegeneration. Transl Neurodegener 3:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Victorino VJ, Mencalha AL, Panis C. Post-translational modifications disclose a dual role for redox stress in cardiovascular pathophysiology. LIFE SCI 2014

  246. Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F (2015) Oxidative post-translational modifications of cysteine residues in plant signal transduction. J Exp Bot 66(10):2923–2934

    Article  CAS  PubMed  Google Scholar 

  247. Tseng AH, Wu LH, Shieh SS, Wang DL (2014) SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia. Biochem J 464:157–168

    Article  CAS  PubMed  Google Scholar 

  248. Liu YB, Gao X, Deeb D, Arbab AS, Gautam SC (2013) Pristimerin induces apoptosis in prostate cancer cells by down-regulating Bcl-2 through ROS-dependent ubiquitin-proteasomal degradation pathway. J Carcinog Mutagen 6:5

    CAS  Google Scholar 

  249. Hori YS, Kuno A, Hosoda R, Horio Y (2013) Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One 8:e73875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Huang K, Huang J, Xie X, Wang S, Chen C, Shen X, Liu P, Huang H (2013) Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-beta1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic Biol Med 65:528–540

    Article  CAS  PubMed  Google Scholar 

  251. Chen IC, Chiang WF, Liu SY, Chen PF, Chiang HC (2013) Role of SIRT3 in the regulation of redox balance during oral carcinogenesis. Mol Cancer 12:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Tseng AH, Shieh SS, Wang DL (2013) SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med 63:222–234

    Article  CAS  PubMed  Google Scholar 

  253. Chen HZ, Wan YZ, Liu DP (2013) Cross-talk between SIRT1 and p66Shc in vascular diseases. Trends Cardiovasc Med 23:237–241

    Article  CAS  PubMed  Google Scholar 

  254. Zarzuelo MJ, Lopez-Sepulveda R, Sanchez M, Romero M, Gomez-Guzman M, Ungvary Z, Perez-Vizcaino F, Jimenez R, Duarte J (2013) SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging. Biochem Pharmacol 85:1288–1296

    Article  CAS  PubMed  Google Scholar 

  255. Kowalik-Jankowska T, Rajewska A, Jankowska E, Wisniewska K, Grzonka Z (2006) Products of Cu(II)-catalyzed oxidation of the N-terminal fragments of alpha-synuclein in the presence of hydrogen peroxide. J Inorg Biochem 100:1623–1631

    Article  CAS  PubMed  Google Scholar 

  256. Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21:396–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Avogaro A, de Kreutzenberg SV, Fadini GP (2008) Oxidative stress and vascular disease in diabetes: is the dichotomization of insulin signaling still valid? Free Radic Biol Med 44:1209–1215

    Article  CAS  PubMed  Google Scholar 

  258. Maiese K, Morhan SD, Chong ZZ (2007) Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus. Curr Neurovasc Res 4:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Frank GD, Eguchi S, Motley ED (2005) The role of reactive oxygen species in insulin signaling in the vasculature. Antioxid Redox Signal 7:1053–1061

    Article  CAS  PubMed  Google Scholar 

  260. Wang X, Hai CX (2011) ROS acts as a double-edged sword in the pathogenesis of type 2 diabetes mellitus: is Nrf2 a potential target for the treatment? Mini Rev Med Chem 11:1082–1092

    Article  CAS  PubMed  Google Scholar 

  261. Pessler-Cohen D, Pekala PH, Kovsan J, Bloch-Damti A, Rudich A, Bashan N (2006) GLUT4 repression in response to oxidative stress is associated with reciprocal alterations in C/EBP alpha and delta isoforms in 3T3-L1 adipocytes. Arch Physiol Biochem 112:3–12

    Article  CAS  PubMed  Google Scholar 

  262. Lee H, Lee YJ, Choi H, Ko EH, Kim JW (2009) Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem 284:10601–10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Doggrell SA (2004) Alpha-lipoic acid, an anti-obesity agent? Exp Opin Investig Drugs 13:1641–1643

    Article  CAS  Google Scholar 

  264. Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS, Yun JY, Namgoong IS, Ha J, Park IS et al (2004) Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 10:727–733

    Article  CAS  PubMed  Google Scholar 

  265. Lee OH, Seo DH, Park CS, Kim YC (2010) Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells. BioFactors 36:459–467

    Article  CAS  PubMed  Google Scholar 

  266. Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF et al (2015) Corrigendum: selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 526:596

    Article  CAS  PubMed  Google Scholar 

  267. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  268. Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO (2014) Antioxidants accelerate lung cancer progression in mice. Sci Transl Med 6:215r–221r

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 31400724) and Natural Science Foundation of Shaanxi Province (2014JQ4135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Wang or Chunxu Hai.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hai, C. Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep 43, 607–628 (2016). https://doi.org/10.1007/s11033-016-4022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4022-y

Keywords

Navigation