Skip to main content

Advertisement

Log in

Epigenetic regulation of BMP2 gene in osteoporosis: a DNA methylation study

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Osteoporosis is a multifactorial disease in which genetic factors and epigenetic modifications play a major role. DNA methylation is known for gene silencing and its effect on BMP2 promoter has been studied here to understand its regulatory activity in osteoporosis pathogenicity. CpG methylation in the BMP2 promoter was analyzed by performing bisulfite specific PCR on the gDNA samples extracted from whole blood of osteoporotic (n = 24) and healthy (n = 24) individuals. Disproportionate allele frequency of CpG sites was calculated statistically. Differential BMP2 expression was estimated using quantitative RT-PCR technique. Luciferase reporter assay was performed to determine and confirm differential transcriptional activity of BMP2 promoter due to methylation. Total of 14 CpG sites were reporter in the BMP2 promoter of which, CpG site at − 267th position upstream to TSS was found to have disproportionate allele frequency among osteoporotic and healthy individuals and was found to be significantly associated with osteoporosis condition. Functional and gene expression analysis of this methylated site using luciferase reporter vector and Real Time PCR approach, suggested reduced transcriptional activity of BMP2 promoter as well as decreased gene expression in disease condition. BMP2 is being a central signaling molecule, aberrant methylation in the promoter region may result into down regulation of osteoblast markers involved in bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

BMD:

Bone mineral density

BMP2:

Bone morphogenetic protein 2

BMP2K:

BMP2 inducible kinase

BMP4:

Bone morphogenetic protein 4

BMP6:

Bone morphogenetic protein 6

BMP7:

Bone morphogenetic protein 7

cDNA:

Complementary DNA

CI:

Class interval

CpG:

5′—C—Phosphate—G—3

Dlx5:

Distal-less homeobox 5

DNA:

Deoxyribonucleic acid

DXA:

Dual X-Ray absorptiometry

ECACC:

European Collection Of Authenticated Cell Cultures

EDTA:

Ethylenediaminetetraacetic acid

E-MEM:

Eagle’s Minimum Essential Medium

EMP2:

Epithelial membrane protein 2

ERKs:

Extracellular signal-regulated kinases

FC:

Fold change

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

gDNA:

Genomic DNA

ICMR:

Indian Council of Medical Research

ID:

Identity

LA:

Luria agar

LB:

Luria Broth

LD:

Linkage disequilibrium

mRNA:

Messenger RNA

MSA:

Multiple sequence alignment

NCBI:

National Center for Biotechnology Information

OSX:

Osterix

PBMC:

Peripheral blood mononuclear cell

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

qRT-PCR:

Quantitative real time polymerase chain reaction

RefSeq:

Reference sequence database

RLU:

Relative luciferase activity

RNA:

Ribonucleic acid

RR:

Risk ratio

RT-PCR:

Reverse transcriptase polymerase chain reaction

RUNX2:

Runt related transcription factor 2

SD:

Standard deviation

SNP:

Single nucleotide polymorphisms

TGF-Beta:

Activated kinase 1

TF:

Transcription factor

TSS:

Transcription start site

WHO:

World Health Organization

References

  1. Kanis JA, Melton III LJ, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9(8):1137–1141. https://doi.org/10.1002/jbmr.5650090802

    Article  CAS  PubMed  Google Scholar 

  2. Wagner DO, Sieber C, Bhushan R, Börgermann JH, Graf D, Knaus P (2010) BMPs: from bone to body morphogenetic proteins. Sci Signal 3(107):mr1. https://doi.org/10.1126/scisignal.3107mr1

    Article  PubMed  Google Scholar 

  3. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Szatkowski JP (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg 85(8):1544–1552. https://doi.org/10.2106/00004623-200308000-00017

    Article  PubMed  Google Scholar 

  4. Kanakaris NK, Petsatodis G, Tagil M, Giannoudis PV (2009) Is there a role for bone morphogenetic proteins in osteoporotic fractures? Injury 40:S21–S26. https://doi.org/10.1016/S0020-1383(09)70007-5

    Article  Google Scholar 

  5. Chen G, Deng C, Li YP (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2):272.–288. https://doi.org/10.7150/ijbs.2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen D, Harris MA, Rossini G, Dunstan CR, Dallas SL, Feng JQ, Harris SE (1997) Bone morphogenetic protein 2 (BMP-2) enhances BMP-3, BMP-4, and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in cultures of fetal rat calvarial osteoblasts. Calcif Tissue Int 60(3):283–290. https://doi.org/10.1007/s002239900230

    Article  CAS  PubMed  Google Scholar 

  7. Kung AW, Huang Q (2007) Genetic and environmental determinants of osteoporosis. J Musculoskelet Neuronal Interact 7(1):26.–32

    PubMed  Google Scholar 

  8. Styrkarsdottir U, Cazier JB, Kong A, Rolfsson O, Larsen H, Bjarnadottir E, Reynisdottir I (2003) Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PLoS Biol 1(3):e69. https://doi.org/10.1371/journal.pbio.0000069

    Article  PubMed  PubMed Central  Google Scholar 

  9. Varanasi SS, Tuck SP, Mastana SS, Dennison E, Cooper C, Vila J, Datta HK (2011) Lack of association of bone morphogenetic protein 2 gene haplotypes with bone mineral density, bone loss, or risk of fractures in men. J Osteoporos 2011:1–6. https://doi.org/10.4061/2011/243465

    Article  CAS  Google Scholar 

  10. Wang H, Liu D, Yang Z, Tian B, Li J, Meng X, Lin X (2008) Association of bone morphogenetic protein-2 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity in Chinese patients. Eur Spine J 17(7):956–964. https://doi.org/10.1007/s00586-008-0651-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Luo M, Zheng M, Lei H, Zhang S, Li Y (2016) Association between bone morphogenetic protein 2 polymorphisms and osteoporotic fracture. Int J Clin Exp Pathol 9(2):1961–1967

    CAS  Google Scholar 

  12. Vrtačnik P, Marc J, Ostanek B (2014) Epigenetic mechanisms in bone. Clin Chem Lab Med 52(5):589–608. https://doi.org/10.1515/cclm-2013-0770

    Article  CAS  PubMed  Google Scholar 

  13. Marini F, Cianferotti L, Brandi ML (2016) Epigenetic mechanisms in bone biology and osteoporosis: can they drive therapeutic choices? Int J Mol Sci 17(8):1329. https://doi.org/10.3390/ijms17081329

    Article  CAS  PubMed Central  Google Scholar 

  14. Delgado-Calle J, Riancho JA (2012) The role of DNA methylation in common skeletal disorders. Biology 1(3):698–713. https://doi.org/10.3390/biology1030698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97. https://doi.org/10.1016/j.tibs.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  16. Reppe S, Datta H, Gautvik MK (2015) The influence of DNA methylation on bone cells. Curr Genom 16(6):384–392. https://doi.org/10.2174/1389202916666150817202913

    Article  CAS  Google Scholar 

  17. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor laboratory press, Cold Spring Harbor.  https://doi.org/10.1016/0307-4412(83)90068-7

    Book  Google Scholar 

  18. Bocheva G, Boyadjieva N (2011) Epigenetic regulation of fetal bone development and placental transfer of nutrients: progress for osteoporosis. Interdiscip Toxicol 4(4):167–172. https://doi.org/10.2478/v10102-011-0026-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, Bae SC (2000) (2000). Runx2 is a common target of transforming growth factor β1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 20(23):8783–8792. https://doi.org/10.1128/MCB.20.23.8783-8792.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Zhang Z (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469. https://doi.org/10.1016/j.cell.2007.05.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Javed A, Afzal F, Bae JS, Gutierrez S, Zaidi K, Pratap J, Lian JB (2009) Specific residues of RUNX2 are obligatory for formation of BMP2-induced RUNX2-SMAD complex to promote osteoblast differentiation. Cells Tissues Organs 189(1–4):133–137. https://doi.org/10.1159/000151719

    Article  CAS  PubMed  Google Scholar 

  22. Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2(12):e216. https://doi.org/10.1371/journal.pgen.0020216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Phimphilai M, Zhao Z, Boules H, Roca H, Franceschi RT (2006) BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res 21(4):637–646. https://doi.org/10.1359/jbmr.060109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang C (2010) Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx. J Orthop Surg Res 5(1):37. https://doi.org/10.1186/1749-799X-5-37

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM (2003) BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 309(3):689–694. https://doi.org/10.1016/j.bbrc.2003.08.058

    Article  CAS  PubMed  Google Scholar 

  26. Lee JY, Lee YM, Kim MJ, Choi JY, Park EK, Kim SY, Kim DS (2006) Methylation of the mouse Dlx5 and Osx gene promoters regulates cell type-specific gene expression. Mol Cells 22(2):182–188

    CAS  PubMed  Google Scholar 

  27. Cho YD, Yoon WJ, Kim WJ, Woo KM, Baek JH, Lee G, Ryoo HM (2014) Epigenetic modifications and canonical WNT signaling enable trans-differentiation of non-osteogenic cells into osteoblasts. J Biol Chem 289(29):20120–20128.  https://doi.org/10.1074/jbc.M114.558064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Ashma.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raje, M.M., Ashma, R. Epigenetic regulation of BMP2 gene in osteoporosis: a DNA methylation study. Mol Biol Rep 46, 1667–1674 (2019). https://doi.org/10.1007/s11033-019-04615-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04615-y

Keywords

Navigation