Skip to main content
Log in

Refinement of the upper limb joint kinematics and dynamics using a subject-specific closed-loop forearm model

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A biofidelic multibody model of the upper limb for the quantitative assessment of joint kinematics and dynamics has the potential to become an innovative tool in many application fields. However, forearm kinematic modeling still presents challenges due to the complexity of providing a closed-loop and subject-specific definition of its multiple degrees of freedom. In this context, this study aims to refine the upper limb multibody model by means of a forearm closed-loop kinematic chain and personalized joint parameters to quantify the forearm joint kinematics and dynamics. To assess the benefits of this refinement, the proposed model is compared to four conventional models according to (i) the global and local movement reconstruction errors during inverse kinematics and (ii) the joint torque-angle pattern. Fifteen (15) healthy adults performed two cyclic dynamic tasks, namely elbow flexion–extension (FE) and forearm pronation–supination (PS). Results show that the proposed model leads to a reduction of the global reconstruction error up to 15 % and 31 % during FE and PS tasks, respectively, while computational times remain similar. The local reconstruction errors show less compensation at the shoulder and wrist for the proposed model. The PS angle and torque are increased by 24 % during the PS task for the proposed model when compared to conventional models. In conclusion, this study addresses novel methodology aspects and a comprehensive description of a forearm multibody model that can serve in multiple applications requiring a realistic representation of the upper limb kinematics and dynamics without increasing the computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

3D:

three-dimensional

AC:

acromioclavicular

AoR(s):

axis (axes) of rotation

BSIP:

body segment inertia parameters

CoR(s):

center(s) of rotation

DoF(s):

degree(s) of freedom

FE:

flexion–extension

GH:

glenohumeral

GO:

global optimization

HR:

humeroradial

HU:

humeroulnar

ISB:

International Society of Biomechanics

LCS:

local coordinate system

MRI:

magnetic resonance imaging

PS:

pronation–supination

RC:

radiocarpal

RU:

radioulnar

SARA:

symmetrical axis of rotation approach

SC:

sternoclavicular

SCoRE:

symmetrical center of rotation estimation

References

  1. Anglin, C., Wyss, U.P.: Review of arm motion analyses. Proc. Inst. Mech. Eng. H J. Eng. 214(5), 541–555 (2000)

    Article  Google Scholar 

  2. Kecskeméthy, A., Weinberg, A.M.: An improved elasto-kinematic model of the human forearm for biofidelic medical diagnosis. Multibody Syst. Dyn. 14(1), 1–21 (2005)

    Article  MATH  Google Scholar 

  3. Pennestrì, E., Stefanelli, R., Valentini, P.P., Vita, L.: Virtual musculo-skeletal model for the biomechanical analysis of the upper limb. J. Biomech. 40, 1350–1361 (2007)

    Article  Google Scholar 

  4. van Andel, C.J., Wolterbeek, N., Doorenbosch, C.A.M., Veeger, D.H.E.J., Harlaar, J.: Complete 3D kinematics of upper extremity functional tasks. Gait Posture 27, 120–127 (2008)

    Article  Google Scholar 

  5. Cutti, A.G., Giovanardi, A., Rocchi, L., Davalli, A., Sacchetti, R.: Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med. Biol. Eng. Comput. 46(2), 169–178 (2008)

    Article  Google Scholar 

  6. Kontaxis, A., Cutti, A.G., Johnson, G.R., Veeger, D.H.E.J.: A framework for the definition of standardized protocols for measuring upper-extremity kinematics. Clin. Biomech. 24, 246–253 (2009)

    Article  Google Scholar 

  7. Rettig, O., Fradet, L., Kasten, P., Raiss, P., Wolf, S.I.: A new kinematic model of the upper extremity based on functional joint parameter determination for shoulder and elbow. Gait Posture 30, 469–476 (2009)

    Article  Google Scholar 

  8. Fohanno, V., Lacouture, P., Colloud, F.: Improvement of upper extremity kinematics estimation using a subject-specific forearm model implemented in a kinematic chain. J. Biomech. 46(6), 1053–1059 (2013)

    Article  Google Scholar 

  9. Pennestrì, E., Renzi, A., Santonocito, P.: Dynamic modeling of the human arm with video-based experimental analysis. Multibody Syst. Dyn. 7(4), 389–406 (2002)

    Article  MATH  Google Scholar 

  10. Leboeuf, F., Bessonnet, G., Seguin, P., Lacouture, P.: Energetic versus sthenic optimality criteria for gymnastic movement synthesis. Multibody Syst. Dyn. 16(3), 213–236 (2006)

    Article  MATH  Google Scholar 

  11. Font-Llagunes, J.M., Barjau, A., Pàmies-Vilà, R., Kövecses, J.: Dynamic analysis of impact in swing-through crutch gait using impulsive and continuous contact models. Multibody Syst. Dyn. 28(3), 257–282 (2012)

    Article  MathSciNet  Google Scholar 

  12. Abdullah, H.A., Tarry, C., Datta, R., Mittal, G.S., Abderrahim, M.: Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy. J. Rehabil. Res. Dev. 44, 43 (2007)

    Article  Google Scholar 

  13. Desroches, G., Dumas, R., Pradon, D., Vaslin, P., Lepoutre, F.X., Chèze, L.: Upper limb joint dynamics during manual wheelchair propulsion. Clin. Biomech. 25(4), 299–306 (2010)

    Article  Google Scholar 

  14. Blana, D., Hincapie, J.G., Chadwick, E.K., Kirsch, R.F.: A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems. J. Biomech. 41(8), 1714–1721 (2008)

    Article  Google Scholar 

  15. Jaspers, E., Desloovere, K., Bruyninckx, H., Klingels, K., Molenaers, G., Aertbeliën, E., Van Gestel, L., Feys, H.: Three-dimensional upper limb movement characteristics in children with hemiplegic cerebral palsy and typically developing children. Res. Dev. Disabil. 32(6), 2283–2294 (2011)

    Article  Google Scholar 

  16. Bolsterlee, B., Veeger, D.H.E.J., Chadwick, E.K.: Clinical applications of musculoskeletal modelling for the shoulder and upper limb. Med. Biol. Eng. Comput. 51(9), 953–963 (2013)

    Article  Google Scholar 

  17. Quental, C., Folgado, J., Ambrósio, J., Monteiro, J.: A multibody biomechanical model of the upper limb including the shoulder girdle. Multibody Syst. Dyn. 28(1–2), 83–108 (2012)

    Article  MathSciNet  Google Scholar 

  18. Jackson, M., Michaud, B., Tétreault, P., Begon, M.: Improvements in measuring shoulder joint kinematics. J. Biomech. 45(12), 2180–2183 (2012)

    Article  Google Scholar 

  19. Senk, M., Chèze, L.: Rotation sequence as an important factor in shoulder kinematics. Clin. Biomech. 21, S3–S8 (2006)

    Article  Google Scholar 

  20. Weinberg, A.M., Pietsch, I.T., Helm, M.B., Hesselbach, J., Tscherne, H.: A new kinematic model of pro- and supination of the human forearm. J. Biomech. 33(4), 487–491 (2000)

    Article  Google Scholar 

  21. Xu, J., Kasten, P., Weinberg, A.M., Kecskeméthy, A.: Automated fitting of an elastokinematic surrogate mechanism for forearm motion from MRI measurements. In: Lenarcic, J., Stanisic, M.M. (eds.) Advances in Robot Kinematics: Motion in Man and Machine, pp. 349–358. Springer, Berlin (2010)

    Chapter  Google Scholar 

  22. Roux, E., Bouilland, S., Godillon-Maquinghen, A.P., Bouttens, D.: Evaluation of the global optimisation method within the upper limb kinematics analysis. J. Biomech. 35, 1279–1283 (2002)

    Article  Google Scholar 

  23. Veeger, D.H.E.J., Yu, B.: Orientation of axes in the elbow and forearm for biomechanical modelling. In: Proceedings of the Fifteenth Southern Biomedical Engineering Conference, 29–31 Mar. 1996, pp. 377–380

    Google Scholar 

  24. Amis, A.A.: Biomechanics of the elbow. In: Stanley, D., Trail, I. (eds.) Operative Elbow Surgery. Churchill Livingstone, Elsevier, Edinburgh, New York (2012)

    Google Scholar 

  25. Tay, S.C., van Riet, R., Kazunari, T., Amrami, K.K., An, K.N., Berger, R.A.: In-vivo kinematic analysis of forearm rotation using helical axis analysis. Clin. Biomech. 25(7), 655–659 (2010)

    Article  Google Scholar 

  26. Goto, A., Moritomo, H., Murase, T., Oka, K., Sugamoto, K., Arimura, T., Nakajima, Y., Yamazaki, T., Sato, Y., Tamura, S., Yoshikawa, H., Ochi, T.: In vivo elbow biomechanical analysis during flexion: three-dimensional motion analysis using magnetic resonance imaging. J. Shoulder Elb. Surg. 13(4), 441–447 (2004)

    Article  Google Scholar 

  27. Zampagni, M.L., Casino, D., Martelli, S., Visani, A., Marcacci, M.: A protocol for clinical evaluation of the carrying angle of the elbow by anatomic landmarks. J. Shoulder Elb. Surg. 17(1), 106–112 (2008)

    Article  Google Scholar 

  28. Morrey, B.F., Chao, E.Y.: Passive motion of the elbow joint. J. Bone Jt. Surg. Am. 58(4), 501–508 (1976)

    Google Scholar 

  29. Raison, M., Detrembleur, C., Fisette, P., Samin, J.C.: Assessment of antagonistic muscle forces during forearm flexion/extension. Multibody Dyn. Comput. Methods Appl. Sci. 23, 215–238 (2011)

    Article  Google Scholar 

  30. Gattamelata, D., Pezzuti, E., Valentini, P.P.: Accurate geometrical constraints for the computer aided modelling of the human upper limb. Comput. Aided Des. 39, 540–547 (2007)

    Article  Google Scholar 

  31. Lemay, M.A., Crago, P.E.: A dynamic model for simulating movements of the elbow, forearm, and wrist. J. Biomech. 29(10), 1319–1330 (1996)

    Article  Google Scholar 

  32. Weinberg, A.M., Pietsch, I.T., Krefft, M., Pape, H.C., van Griensven, M., Helm, M.B., Reilmann, H., Tscherne, H.: Die Pro- und Supination des Unterarms Unter besonderer Berücksichtigung der Articulatio humeroulnaris. Der Unfallchirurg 104(5), 404–409 (2001)

    Article  Google Scholar 

  33. Kasten, P., Krefft, M., Hesselbach, J., Weinberg, A.M.: Kinematics of the ulna during pronation and supination in a cadaver study: implications for elbow arthroplasty. Clin. Biomech. 19(1), 31–35 (2004)

    Article  Google Scholar 

  34. Kapandji, I.A., Honoré, L.H.: The Physiology of the Joints: The Upper Limb, vol. 1. Churchill Livingstone/Elsevier, Edinburgh, New York (2007)

    Google Scholar 

  35. Wu, G., van der Helm, F.C., Veeger, D.H.E.J., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A.R., McQuade, K., Wang, X., Werner, F.W., Buchholz, B.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting joint motion—Part II: shoulder, elbow, wrist and hand. J. Biomech. 38(5), 981–992 (2005)

    Article  Google Scholar 

  36. Piazza, S.J., Delp, S.L.: The influence of muscles on knee flexion during the swing phase of gait. J. Biomech. 29(6), 723–733 (1996)

    Article  Google Scholar 

  37. Chin, A., Lloyd, D., Alderson, J., Elliott, B., Mills, P.: A marker-based mean finite helical axis model to determine elbow rotation axes and kinematics in vivo. J. Appl. Biomech. 26(3), 305–315 (2010)

    Google Scholar 

  38. Ehrig, R.M., Taylor, W.R., Duda, G.N., Heller, M.O.: A survey of formal methods for determining the centre of rotation of ball joints. J. Biomech. 39(15), 2798–2809 (2006)

    Article  Google Scholar 

  39. Ehrig, R.M., Taylor, W.R., Duda, G.N., Heller, M.O.: A survey of formal methods for determining functional joint axes. J. Biomech. 40(10), 2150–2157 (2007)

    Article  Google Scholar 

  40. O’Brien, J.F., Bodenheimer, R.E. Jr., Brostow, G.J., Hodgins, J.K.: Automatic joint parameter estimation from magnetic motion capture data. In: Proceedings of the Graphics Interface, pp. 53–60 (2000)

    Google Scholar 

  41. Monnet, T., Thouzé, A., Pain, M.T., Begon, M.: Assessment of reproducibility of thigh marker ranking during walking and landing tasks. Med. Eng. Phys. 34(8), 1200–1208 (2012)

    Article  Google Scholar 

  42. Cappozzo, A., Della Croce, U., Leardini, A., Chiari, L.: Human movement analysis using stereophotogrammetry: Part 1: theoretical background. Gait Posture 21(2), 186–196 (2005)

    Google Scholar 

  43. Chiari, L., Croce, U.D., Leardini, A., Cappozzo, A.: Human movement analysis using stereophotogrammetry: Part 2: Instrumental errors. Gait Posture 21(2), 197–211 (2005)

    Article  Google Scholar 

  44. Alonso, F.J., Castillo, J.M., Pintado, P.: Application of singular spectrum analysis to the smoothing of raw kinematic signals. J. Biomech. 38(5), 1085–1092 (2005)

    Article  Google Scholar 

  45. Leardini, A., Chiari, L., Croce, U.D., Cappozzo, A.: Human movement analysis using stereophotogrammetry: Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21(2), 212–225 (2005)

    Article  Google Scholar 

  46. Della Croce, U., Leardini, A., Chiari, L., Cappozzo, A.: Human movement analysis using stereophotogrammetry: Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21(2), 226–237 (2005)

    Article  Google Scholar 

  47. Begon, M., Monnet, T., Lacouture, P.: Effects of movement for estimating the hip joint centre. Gait Posture 25(3), 353–359 (2007)

    Article  Google Scholar 

  48. Lu, T.W., O’Connor, J.J.: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32(2), 129–134 (1999)

    Article  Google Scholar 

  49. Begon, M., Wieber, P.B., Yeadon, M.R.: Kinematics estimation of straddled movements on high bar from a limited number of skin markers using a chain model. J. Biomech. 41(3), 581–586 (2008)

    Article  Google Scholar 

  50. Challis, J.H.: A procedure for determining rigid body transformation parameters. J. Biomech. 28(6), 733–737 (1995)

    Article  Google Scholar 

  51. Chèze, L., Fregly, B.J., Dimnet, J.: A solidification procedure to facilitate kinematic analyses based on video system data. J. Biomech. 28(7), 879–884 (1995)

    Article  Google Scholar 

  52. Rao, G., Amarantini, D., Berton, E., Favier, D.: Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J. Biomech. 39(8), 1531–1536 (2006)

    Article  Google Scholar 

  53. Yeadon, M.R.: The simulation of aerial movement II: A mathematical inertia model of the human body. J. Biomech. 23(1), 67–74 (1990)

    Article  Google Scholar 

  54. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (1990)

    Google Scholar 

  55. Zatsiorsky, V.M., Seluyanov, V., Chugunova, L.: In Vivo Body Segment Inertial Parameters Determination Using a Gamma-Scanner Method. Biomechanics of Human Movement: Applications in Rehabilitation, Sports and Ergonomics. Bertec Corporation, Worthington (1990)

    Google Scholar 

  56. de Leva, P.: Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J. Biomech. 29(9), 1223–1230 (1996)

    Article  Google Scholar 

  57. Cheng, C.K., Chen, H.H., Chen, C.S., Lee, C.L., Chen, C.Y.: Segment inertial properties of Chinese adults determined from magnetic resonance imaging. Clin. Biomech. 15(8), 559–566 (2000)

    Article  Google Scholar 

  58. Samin, J.-C., Fisette, P.: Symbolic Modeling of Multibody Systems. Kluwer Academic, Dordrecht (2003)

    Book  MATH  Google Scholar 

  59. Chenut, X., Fisette, P., Samin, J.C.: Recursive formalism with a minimal dynamic parameterization for the identification and simulation of multibody systems. Application to the human body. Multibody Syst. Dyn. 8(2), 117–140 (2002)

    Article  MATH  Google Scholar 

  60. Docquier, N., Poncelet, A., Fisette, P.: ROBOTRAN: a powerful symbolic generator of multibody models. Mech. Sci. 4(1), 199–219 (2013)

    Article  Google Scholar 

  61. Fisette, P., Postiau, T., Sass, L., Samin, J.C.: Fully symbolic generation of complex multibody models. Mech. Struct. Mach. 30(1), 31–82 (2002)

    Article  Google Scholar 

  62. Samin, J.C., Brüls, O., Collard, J.F., Sass, L., Fisette, P.: Multiphysics modeling and optimization of mechatronic multibody systems. Multibody Syst. Dyn. 18(3), 345–373 (2007)

    Article  MATH  Google Scholar 

  63. Hof, A.L.: Scaling gait data to body size. Gait Posture 4(3), 222–223 (1996)

    Article  Google Scholar 

  64. Ausejo, S., Suescun, Á., Celigüeta, J.: An optimization method for overdetermined kinematic problems formulated with natural coordinates. Multibody Syst. Dyn. 26(4), 397–410 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  65. Fohanno, V., Begon, M., Lacouture, P., Colloud, F.: Estimating joint kinematics of a whole body chain model with closed-loop constraints. Multibody Syst. Dyn., 1–17 (2013)

  66. Schmidt, R., Disselhorst-Klug, C., Silny, J., Rau, G.: A marker-based measurement procedure for unconstrained wrist and elbow motions. J. Biomech. 32(6), 615–621 (1999)

    Article  Google Scholar 

  67. Hamming, D., Braman, J.P., Phadke, V., LaPrade, R.F., Ludewig, P.M.: The accuracy of measuring glenohumeral motion with a surface humeral cuff. J. Biomech. 45(7), 1161–1168 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Fonds québécois de la recherche sur la nature et les technologies (FQRNT), NSERC/Discovery, and the MÉDITIS (NSERC/CREATE) training program and scholarships in biomedical technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Raison.

Appendices

Appendix A: Kinematic chains of the models

Table 4 Kinematic chain description of the proposed model (A)
Table 5 Kinematic chain description of model B
Table 6 Kinematic chain description of model C
Table 7 Kinematic chain description of model C2
Table 8 Kinematic chain description of model D

Appendix B: Functional local coordinate system

The functional LCS based at the HU joint, intended to describe the forearm rotations, is built as follows (adapted from [6]):

  • Z HU=AoR FE/∥AoR FE∥: pointing lateral

  • X HU=Y H1×Z HU/∥(Y H1×Z HU)∥: pointing forward

  • Y HU=Z H1×X HU/∥(Z HU×X HU)∥: pointing proximal

where AoR FE is the flexion–extension axis of rotation of the elbow computed through the SARA method [39], while Y H1 is the anatomical axis of the humerus constructed as follows using the glenohumeral (GH) joint center and the mean position between the medial (EM) and lateral (EL) epicondyles (E=(EM+EL)/2):

  • Y H1=(GHE)/∥(GHE)∥: pointing proximal

Appendix C: Description of the marker locations

Table 9 Locations of the n markers on the thorax, clavicle, scapula, humerus, ulna, radius, and hand

Appendix D: Theoretical paths at the distal end of the forearm

Fig. 9
figure 9

Cross-sectional view of the theoretical paths of each forearm bone at the distal end. (a) Isometric view of the forearm. Combination of ulnar abduction–adduction and flexion–extension entailing a circular trajectory of the ulna at the distal end, as described by Amis [24] during (b) supination and (c) pronation. Ulnar flexion–extension entailing a planar trajectory of the ulna at the distal end, as described by the model of Kecskeméthy and Weinberg [2] during (d) supination and (e) pronation. The green arrow indicates that there is no axial rotation of the ulna (Color figure online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laitenberger, M., Raison, M., Périé, D. et al. Refinement of the upper limb joint kinematics and dynamics using a subject-specific closed-loop forearm model. Multibody Syst Dyn 33, 413–438 (2015). https://doi.org/10.1007/s11044-014-9421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9421-z

Keywords

Navigation