Skip to main content
Log in

On the constraints violation in forward dynamics of multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

It is known that the dynamic equations of motion for constrained mechanical multibody systems are frequently formulated using the Newton–Euler’s approach, which is augmented with the acceleration constraint equations. This formulation results in the establishment of a mixed set of partial differential and algebraic equations, which are solved in order to predict the dynamic behavior of general multibody systems. The classical solution of the equations of motion is highly prone to constraints violation because the position and velocity constraint equations are not fulfilled. In this work, a general and comprehensive methodology to eliminate the constraints violation at the position and velocity levels is offered. The basic idea of the described approach is to add corrective terms to the position and velocity vectors with the intent to satisfy the corresponding kinematic constraint equations. These corrective terms are evaluated as a function of the Moore–Penrose generalized inverse of the Jacobian matrix and of the kinematic constraint equations. The described methodology is embedded in the standard method to solve the equations of motion based on the technique of Lagrange multipliers. Finally, the effectiveness of the described methodology is demonstrated through the dynamic modeling and simulation of different planar and spatial multibody systems. The outcomes in terms of constraints violation at the position and velocity levels, conservation of the total energy and computational efficiency are analyzed and compared with those obtained with the standard Lagrange multipliers method, the Baumgarte stabilization method, the augmented Lagrangian formulation, the index-1 augmented Lagrangian, and the coordinate partitioning method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Wittenburg, J.: Dynamics of Systems of Rigid Bodies. Teubner, Stuttgart (1977)

    Book  MATH  Google Scholar 

  2. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  3. Shabana, A.A.: Dynamics of Multibody Systems. Wiley, New York (1989)

    MATH  Google Scholar 

  4. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems V.1: Basic Methods. Allyn & Bacon, Boston (1989)

    Google Scholar 

  5. Schiehlen, W.: Multibody Systems Handbook. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  6. Huston, R.L.: Multibody Dynamics. Butterworth–Heinemann, Boston (1990)

    MATH  Google Scholar 

  7. Jalón, J.G., Bayo, E.: Kinematic and Dynamic Simulations of Multibody Systems: The Real-Time Challenge. Springer, New York (1994)

    Book  Google Scholar 

  8. Flores, P.: Concepts and Formulations for Spatial Multibody Dynamics. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  9. Amirouche, F.: Computational Methods in Multibody Dynamics. Prentice Hall, New York (1992)

    MATH  Google Scholar 

  10. Rahnejat, H.: Multi-body dynamics: historical evolution and application. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 214, 149–173 (2000)

    Article  Google Scholar 

  11. Udwadia, F.E.: Equations of motion for constrained multibody systems and their control. J. Optim. Theory Appl. 127(3), 627–638 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1, 3–12 (2006)

    Article  Google Scholar 

  13. Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18, 3–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nikravesh, P.E.: Newtonian-based methodologies in multi-body dynamics. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 222, 277–288 (2008)

    Google Scholar 

  15. Routh, E.T.: Dynamics of a System of Rigid Bodies. Macmillan, London (1905)

    MATH  Google Scholar 

  16. Orlandea, N., Chace, M.A., Calahan, D.A.: A sparsity oriented approach to the dynamic analysis and design of mechanical systems—parts 1 and 2. J. Eng. Ind. 99, 773–784 (1977)

    Article  Google Scholar 

  17. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  18. Greenwood, D.T.: Principles of Dynamics, 2nd edn. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  19. Huston, R.L.: Multibody dynamics—modeling and analysis methods. Appl. Mech. Rev. 44(3), 109–117 (1991)

    Article  Google Scholar 

  20. Pfeifer, F., Glocker, C.: Multibody Dynamics with Unilateral Constraints. Wiley, New York (1996)

    Book  Google Scholar 

  21. Nikravesh, P.E.: Planar Multibody Dynamics: Formulation, Programming, and Applications. CCR Press, London (2008)

    MATH  Google Scholar 

  22. Guo, W., Wang, T.: A methodology for simulations of multi-rigid body systems with topology changes. Multibody Syst. Dyn. 32(1), 25–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nikravesh, P.E.: Some methods for dynamic analysis of constrained mechanical systems: a survey. In: Haug, E.J. (ed.) Computer-Aided Analysis and Optimization of Mechanical System Dynamics, pp. 351–368. Springer, Berlin (1984)

    Chapter  Google Scholar 

  24. Rosen, A., Edelstein, E.: Investigation of a new formulation of the Lagrange method for constrained dynamic systems. J. Appl. Mech. 64, 116–122 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics, vol. 45. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  26. Von Schwerin, R.: Multibody System Simulation: Numerical Methods, Algorithms, and Software, vol. 7. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  27. Blajer, W.: Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems. Multibody Syst. Dyn. 7, 265–284 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2007)

    Article  Google Scholar 

  29. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2007)

    Article  Google Scholar 

  30. Masarati, P.: Constraint stabilization of mechanical systems in ordinary differential equations form. J. Multi-Body Dyn. 225, 12–33 (2011)

    Google Scholar 

  31. Flores, P., Machado, M., Seabra, E., Silva, M.T.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 0110191 (2011)

    Article  Google Scholar 

  32. Neto, M.A., Ambrósio, J.: Stabilization methods for the integration of DAE in the presence of redundant constraints. Multibody Syst. Dyn. 10, 81–105 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fisette, P., Vaneghem, B.: Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implicit Newmark scheme. Comput. Methods Appl. Mech. Eng. 135, 85–105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ascher, U., Chin, H., Petzold, L., Reich, S.: Stabilization of constrained mechanical systems with DAEs and invariant manifolds. Mech. Struct. Mach. 23, 135–157 (1995)

    Article  MathSciNet  Google Scholar 

  35. Cuadrado, J., Cardenal, J., Bayo, E.: Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody Syst. Dyn. 1(3), 259–280 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schwerin, R.: Multibody System Simulation. Numerical Methods, Algorithms and Software. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  37. Yu, Q., Chen, I.M.: A direct violation correction method in numerical simulation of constrained multibody systems. Comput. Mech. 26(1), 52–57 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Aghili, F., Piedbœuf, J.-C.: Simulation of motion of constrained multibody systems based on projection operator. Multibody Syst. Dyn. 10(1), 3–16 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A, Math. Phys. Eng. Sci. 462(2071), 2097–2117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Flores, P., Pereira, R., Machado, M., Seabra, E.: Investigation on the Baumgarte stabilization method for dynamic analysis of constrained multibody systems. In: Ceccarelli, M. (ed.) Proceedings of the EUCOMES 08, the Second European Conference on Mechanism Science, Cassino, Italy, September 17–20, 2008, pp. 305–312 (2009).

    Google Scholar 

  41. Vlasenko, D., Kasper, R.: Implementation of consequent stabilization method for simulation of multibodies described in absolute coordinates. Multibody Syst. Dyn. 22, 297–319 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mariti, L., Belfiore, N.P., Pennestrì, E., Valentini, P.P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Methods Eng. 88(7), 637–656 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Müller, A.: Motion equations in redundant coordinates with application to inverse dynamics of constrained mechanical systems. Nonlinear Dyn. 67, 2527–2541 (2012)

    Article  MathSciNet  Google Scholar 

  44. Uchida, T., Vyasarayani, C.P., Smart, M., McPhee, J.: Parameter identification for multibody systems expressed in differential-algebraic form. Multibody Syst. Dyn. 31(4), 393–403 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  46. Baumgarte, J.: A new method of stabilization for holonomic constraints. J. Appl. Mech. 50, 869–870 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chang, C.O.: Dynamic analysis and optimum design of mechanical systems with constraint violation stabilization method. Ph.D. dissertation, Department of Mechanical Engineering, University of Iowa (1984)

  48. Barzel, R., Barr, A.: A modeling system based on dynamic constraints. Comput. Graph. 22(4), 179–188 (1988)

    Article  Google Scholar 

  49. Platt, J.C., Barr, A.: Constraint methods for flexible models. Comput. Graph. 22(4), 279–288 (1988)

    Article  Google Scholar 

  50. Yoon, S.: Real-time simulation of constrained dynamic systems. Ph.D. dissertation, Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI (1990)

  51. Ostermeyer, G.P.: On Baumgarte stabilization for differential algebraic equations. In: Haug, E.J., Deyo, R.C. (eds.) Real-Time Integration Methods for Mechanical System Simulations. NATO ASI Series, vol. F69, pp. 193–207. Springer, Berlin (1990)

    Chapter  Google Scholar 

  52. Chin, H.S.: Stabilization methods for simulations of constrained multibody dynamics. Ph.D. dissertation, Department of Mathematics, The University of British Columbia, Canada (1995)

  53. Eich, E., Hanke, M.: Regularization methods for constrained mechanical multibody systems. Z. Angew. Math. Mech. 75(10), 761–773 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  54. Baraff, D.: Linear-time dynamics using Lagrange multipliers. In: Proceedings of SIGGRAPH 1996. ACM SIGGRAPH, Computer Graphics Proceedings, pp. 137–146. ACM, New York (1996)

    Google Scholar 

  55. Lin, S.T., Hong, M.-C.: Stabilization method for numerical integration of multibody mechanical systems. J. Mech. Des. 120, 565–572 (1998)

    Article  Google Scholar 

  56. Chiou, J.C., Wu, S.D.: Constraint violation stabilization using input-output feedback linearization in multibody dynamic analysis. J. Guid. Control Dyn. 21(2), 222–228 (1998)

    Article  MATH  Google Scholar 

  57. Junkins, J.L., Akella, M.R., Kurdila, A.J.: Adaptive realization of desired constraint stabilization dynamics in the control of multibody systems. Philos. Trans., Math. Phys. Eng. Sci. 359(1788), 2231–2249 (2001)

    Article  MATH  Google Scholar 

  58. Hajzman, M., Polach, P.: Application of stabilization techniques in the dynamic analysis of multibody systems. Appl. Comput. Mech. 1, 479–488 (2007)

    Google Scholar 

  59. Machado, M., Costa, J., Seabra, E., Flores, P.: The effect of the lubricated revolute joint parameters and hydrodynamic force models on the dynamic response of planar multibody systems. Nonlinear Dyn. 69(1–2), 635–654 (2012)

    Article  Google Scholar 

  60. Ascher, U.R., Chin, H., Reich, S.: Stabilization of DAEs and invariant manifolds. Numer. Math. 67(2), 131–149 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  61. Chang, C.O., Nikravesh, P.E.: An adaptive constraint violation stabilization method for dynamic analysis of mechanical systems. J. Mech. Transm. Autom. Des. 107, 488–492 (1985)

    Article  Google Scholar 

  62. Bae, D.S., Yang, S.M.: A stabilization method for kinematic and kinetic constraint equations. In: Haug, E.J., Deyo, R.C. (eds.) Real-Time Integration Methods for Mechanical System Simulation, pp. 209–232. Springer, Berlin (1990)

    Chapter  Google Scholar 

  63. Yoon, S., Howe, R.M., Greenwood, D.T.: Stability and accuracy analysis of Baumgarte’s constraint violation stabilization method. J. Mech. Des. 117, 446–453 (1995)

    Article  Google Scholar 

  64. Lin, S.T., Hong, M.C.: Stabilization method for numerical integration of multibody mechanical systems. J. Mech. Des. 120, 565–572 (1998)

    Article  Google Scholar 

  65. Lin, S.-T., Huang, J.-N.: Stabilization of Baumgarte’s method using the Runge–Kutta approach. J. Mech. Des. 124, 633–641 (2002)

    Article  Google Scholar 

  66. Park, K.C., Chiou, J.C.: Stabilization of computational procedures for constrained dynamical systems. J. Guid. Control Dyn. 11, 365–370 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  67. Park, K.C., Chiou, J.C., Downer, J.D.: Explicit-implicit staggered procedure for multibody dynamics analysis. J. Guid. Control Dyn. 13(3), 562–570 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  68. Ostermeyer, G.P.: On Baumgarte stabilization for differential algebraic equations. In: Haug, E.J., Deyo, R.C. (eds.) Real-Time Integration Methods for Mechanical System Simulation, pp. 193–207. Springer, Berlin (1990)

    Chapter  Google Scholar 

  69. Yoon, S., Howe, R.M., Greenwood, D.T.: Constraint violation stabilization using gradient feedback in constrained dynamics simulation. J. Guid. Control Dyn. 15(6), 1467–1474 (1992)

    Article  MATH  Google Scholar 

  70. Hong, M., Choi, M.-H., Jung, S., Welch, S., Trapp, J.: Effective constrained dynamic simulation using implicit constraint enforcement. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 4531–4536 (2005)

    Google Scholar 

  71. Hong, M., Welch, S., Trapp, J., Choi, M.H.: Implicit constraint enforcement for rigid body dynamic simulation. In: Computational Science—ICCS 2006. Lecture Notes in Computer Science, vol. 3991, pp. 490–497 (2006)

    Chapter  Google Scholar 

  72. Weijia, Z., Zhenkuan, P., Yibing, W.: An automatic constraint violation stabilization method for differential/algebraic equations on multibody system dynamics. Appl. Math. Mech. 21(1), 103–108 (2000)

    Article  MATH  Google Scholar 

  73. Cline, M.B., Pai, D.K.: Post-stabilization for rigid body simulation with contact and constraints. In: Proceedings of the IEEE International Conference on Robotics and Automation, 8 pp. (2003)

    Google Scholar 

  74. Bayo, E., Jalón, J.G., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Math. 71(2), 183–195 (1988)

    MathSciNet  MATH  Google Scholar 

  75. Bayo, E., Avello, A.: Singularity-free augmented Lagrangian algorithms for constrained multibody dynamics. Nonlinear Dyn. 5(2), 209–231 (1994)

    Google Scholar 

  76. Terze, Z., Lefeber, D., Muftic, O.: Null space integration method for constrained multibody systems with no constraint violation. Multibody Syst. Dyn. 6, 229–243 (2001)

    Article  MATH  Google Scholar 

  77. Braun, D.J., Goldfarb, M.: Eliminating constraint drift in the numerical simulation of constrained dynamical systems. Comput. Methods Appl. Math. 198(37–40), 3151–3160 (2009)

    MathSciNet  MATH  Google Scholar 

  78. Blajer, W.: Methods for constraint violation suppression in the numerical simulation of constrained multibody systems—a comparative study. Comput. Methods Appl. Math. 200(13–16), 1568–1576 (2011)

    MathSciNet  MATH  Google Scholar 

  79. Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained systems. J. Mech. Des. 104, 247–255 (1982)

    Article  Google Scholar 

  80. Nikravesh, P.E., Haug, E.J.: Generalized coordinate partitioning for analysis of mechanical system with nonholonomic constraints. J. Mech. Transm. Autom. Des. 105(3), 379–384 (1983)

    Article  Google Scholar 

  81. Haug, E.J., Yen, J.: Generalized coordinate partitioning methods for numerical integration of differential-algebraic equations of dynamics. In: Haug, E.J., Deyo, R.C. (eds.) Real-Time Integration Methods for Mechanical System Simulation. NATO ASI Series, vol. 69, pp. 97–114. Springer, Berlin (1991)

    Chapter  Google Scholar 

  82. Arabyan, A., Wu, F.: An improved formulation for constrained mechanical systems. Multibody Syst. Dyn. 2(1), 49–69 (1998)

    Article  MATH  Google Scholar 

  83. Terze, Z., Naudet, J.: Geometric properties of projective constraint violation stabilization method for generally constrained multibody systems on manifolds. Multibody Syst. Dyn. 20, 85–106 (2008)

    Article  MATH  Google Scholar 

  84. Terze, Z., Naudet, J.: Structure of optimized generalized coordinates partitioned vectors for holonomic and non-holonomic systems. Multibody Syst. Dyn. 24(2), 203–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  85. Blajer, W., Schiehlen, W., Schirm, W.: A projective criterion to the coordinate partitioning method for multibody dynamics. Arch. Appl. Mech. 64, 86–98 (1994)

    MATH  Google Scholar 

  86. Nikravesh, P.E., Skinivasan, M.: Generalized co-ordinate partitioning in static equilibrium analysis of large-scale mechanical systems. Int. J. Numer. Methods Eng. 21, 451–464 (1985)

    Article  MATH  Google Scholar 

  87. Jalón, J.G., Unda, J., Avello, A., Jiménez, J.M.: Dynamic analysis of three-dimensional mechanisms in natural coordinates. Comput. Methods Appl. Mech. Eng. 56, 309–327 (1986)

    Article  MATH  Google Scholar 

  88. Ider, S.K., Amirouche, E.M.L.: Coordinate reduction in constrained spatial dynamic systems—a new approach. J. Appl. Mech. 55, 899–905 (1988)

    Article  MATH  Google Scholar 

  89. Fuhrer, C., Schwertassek, R.: Generation and solution of multibody systems equations. Int. J. Non-Linear Mech. 25, 127–141 (1990)

    Article  MATH  Google Scholar 

  90. Jalón, J.G., Gutiérrez-López, M.D.: Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody Syst. Dyn. 30(3), 311–341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  91. Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)

    Article  Google Scholar 

  92. Carpinelli, M., Gubitosa, M., Mundo, D., Desmet, W.: Automated independent coordinates’ switching for the solution of stiff DAEs with the linearly implicit Euler method. Multibody Syst. Dyn. 36(1), 67–85 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  93. Lubich, C.: Extrapolation integrators for constrained multibody systems. Impact Comput. Sci. Eng. 3(3), 213–234 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  94. Andrzejewski, T., Bock, H.: Recent advances in the numerical integration of multibody systems. In: Schiehlen, W. (ed.) Advanced Multibody System Dynamics. Solid Mechanics and Its Applications, vol. 20, pp. 127–151. Springer, Netherlands (1993)

    Chapter  Google Scholar 

  95. Yu, Q., Chen, I.M.: A direct violation correction method in numerical simulation of constrained multibody systems. Comput. Mech. 26(1), 52–57 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  96. Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Numer. Anal. 30(5), 1467–1482 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  97. Yoon, S., Howe, R.M., Greenwood, D.T.: Geometric elimination of constraint violations in numerical simulation of Lagrangian equations. J. Mech. Des. 116, 1058–1064 (1994)

    Article  Google Scholar 

  98. Blajer, W.: An orthonormal tangent space method for constrained multibody systems. Comput. Methods Appl. Mech. Eng. 121, 45–57 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  99. Blajer, W.: A geometric unification of constrained system dynamics. Multibody Syst. Dyn. 1(1), 3–21 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  100. Aghili, F., Piedboeuf, J.C.: Simulation of motion of constrained multibody systems based on projection operator. Multibody Syst. Dyn. 10(1), 3–16 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  101. Tseng, F.-C., Ma, Z.-D., Hulbert, G.M.: Efficient numerical solution of constrained multibody dynamics systems. Comput. Methods Appl. Mech. Eng. 192, 439–472 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  102. Nikravesh, P.E.: Initial condition correction in multibody dynamics. Multibody Syst. Dyn. 18, 107–115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  103. Zhang, J., Liu, D., Liu, Y.: A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix. Multibody Syst. Dyn. 36(1), 87–110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  104. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn. 9(1–2), 113–130 (1996)

    Article  MathSciNet  Google Scholar 

  105. Orden, J.G.: Energy considerations for the stabilization of constrained mechanical systems with velocity projection. Nonlinear Dyn. 60(1–2), 49–62 (2010)

    MathSciNet  MATH  Google Scholar 

  106. Orden, J.G., Conde Martín, S.: Controllable velocity projection for constraint stabilization in multibody dynamics. Nonlinear Dyn. 68(1–2), 245–257 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  107. Terze, Z., Müller, A., Zlatar, D.: Lie-group integration method for constrained multibody systems in state space. Multibody Syst. Dyn. 34, 275–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  108. Müller, A., Terze, Z.: The significance of the configuration space Lie group for the constraint satisfaction in numerical time integration of multibody systems. Mech. Mach. Theory 82, 173–202 (2014)

    Article  Google Scholar 

  109. Tian, Q., Xiao, Q., Sun, Y., Hu, H., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284 (2015)

    Article  MathSciNet  Google Scholar 

  110. Qi, Z., Wang, G., Zhang, Z.: Contact analysis of deep groove ball bearings in multibody systems. Multibody Syst. Dyn. 33(2), 115–141 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  111. Blajer, W.: Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy. Multibody Syst. Dyn. 8(2), 141–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  112. Haghshenas-Jaryani, M., Bowling, A.: A new switching strategy for addressing Euler parameters in dynamic modeling and simulation of rigid multibody systems. Multibody Syst. Dyn. 30(2), 185–197 (2013)

    Article  MathSciNet  Google Scholar 

  113. Wojtyra, M., Fraczek, J.: Comparison of selected methods of handling redundant constraints in multibody system simulations. J. Comput. Nonlinear Dyn. 8, 021007 (2013)

    Article  Google Scholar 

  114. Unda, J., Jalón, J.G., Losantos, F., Emparantza, R.: A comparative study of different formulations of the dynamic equations of constrained mechanical systems. J. Mech. Transm. Autom. Des. 109, 466–474 (1987)

    Article  Google Scholar 

  115. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. Lond., Math. Phys. Sci. 439(1906), 407–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  116. Erberhard, P., Schielen, W.: Computational dynamics of multibody systems: history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1, 3–12 (2006)

    Article  Google Scholar 

  117. Ruzzeh, B., Kövecses, J.: A penalty formulation for dynamic analysis of redundant mechanical systems. J. Comput. Nonlinear Dyn. 6, 021008 (2011)

    Article  Google Scholar 

  118. González, F., Kövecses, J.: Use of penalty formulations in the dynamic simulation and analysis of redundantly constrained multibody systems. Multibody Syst. Dyn. 29(1), 57–76 (2013)

    Article  MathSciNet  Google Scholar 

  119. Kim, J.K., Chung, I.S., Lee, B.H.: Determination of the feedback coefficients for the constraint violation stabilization method. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 204, 233–242 (1990)

    Article  Google Scholar 

  120. Angles, J., Lee, S.: The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement. J. Appl. Mech. 55, 243–244 (1988)

    Article  MATH  Google Scholar 

  121. Agrawal, O.P., Saigal, S.: Dynamic analysis of multi-body systems using tangent coordinates. Comput. Struct. 31(3), 349–355 (1989)

    Article  Google Scholar 

  122. Shabana, A.A.: Computational Dynamics. Wiley, New York (1994)

    MATH  Google Scholar 

  123. Jalón, J.G., Callejo, A., Hidalgo, A.F.: Efficient solution of Maggi’s equations. J. Comput. Nonlinear Dyn. 7(2), 021003 (2012)

    Article  Google Scholar 

  124. Serban, R., Haug, E.J.: Globally independent coordinates for real-time vehicle simulation. J. Mech. Des. 122(4), 575–582 (2000)

    Article  Google Scholar 

  125. Malczyk, P., Frączek, J.: A divide and conquer algorithm for constrained multibody system dynamics based on augmented Lagrangian method with projections-based error correction. Nonlinear Dyn. 70(1), 871–889 (2012)

    Article  MathSciNet  Google Scholar 

  126. Bayo, E., Jalón, J.G., Avello, A., Cuadrado, J.: An efficient computational method for real time multibody dynamic simulation in fully Cartesian coordinates. Comput. Methods Appl. Mech. Eng. 92(3), 377–395 (1991)

    Article  MATH  Google Scholar 

  127. Flores, P., Nikravesh, P.E.: Comparison of different methods to control constraints violation in forward multibody dynamics. In: Proceedings of the ASME Design Engineering Technical Conference, vol. 7 A. ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013. Portland, OR, United States, 4–7 August, Code 103368 (2013)

    Google Scholar 

  128. Cuadrado, J., Cardenal, J., Morer, P., Bayo, E.: Intelligent simulation of multibody dynamics: space–state and descriptor methods in sequential and parallel computing environments. Multibody Syst. Dyn. 4(1), 55–73 (2000)

    Article  MATH  Google Scholar 

  129. Dopico, D., González, F., Cuadrado, J., Kövecses, J.: Determination of holonomic and nonholonomic constraint reactions in an index-3 augmented Lagrangian formulation with velocity and acceleration projections. J. Comput. Nonlinear Dyn. 9(4), 041006, 9 pp. (2014)

    Article  Google Scholar 

  130. González, F., Dopico, D., Pastorino, R., Cuadrado, J.: Benchmarking of augmented Lagrangian and Hamiltonian formulations for multibody system dynamics. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Catalonia, Spain, June 29–July 2, 2015, pp. 1548–1559 (2015)

    Google Scholar 

  131. González, F., Dopico, D., Pastorino, R., Cuadrado, J.: Behaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurations. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2774-5

    MathSciNet  Google Scholar 

  132. Flores, P.: A methodology for quantifying the position errors due to manufacturing and assemble tolerances. J. Mech. Eng. 57(6), 457–467 (2011)

    Article  Google Scholar 

  133. Moore, E.H.: On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26(9), 394–395 (1920)

    Article  Google Scholar 

  134. Penrose, R.: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51, 406–413 (1955)

    Article  MATH  Google Scholar 

  135. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York (1971)

    MATH  Google Scholar 

  136. Mani, N.K., Haug, E.J., Atkinson, K.E.: Singular value decomposition for analysis of mechanical system dynamics. J. Mech. Transm. Autom. Des. 107, 82–87 (1985)

    Article  Google Scholar 

  137. Singh, R.P., Likins, P.W.: Singular value decomposition for constrained mechanical systems. J. Appl. Mech. 52, 943–948 (1985)

    Article  MATH  Google Scholar 

  138. Kim, S.S., Vanderploeg, M.J.: QR decomposition for state space representation of constrained mechanical dynamical systems. J. Mech. Transm. Autom. Des. 108, 183–188 (1986)

    Article  Google Scholar 

  139. Meijaard, J.P.: Applications of the single value decomposition in dynamics. Comput. Methods Appl. Mech. Eng. 103, 161–173 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  140. McPhee, J., Shi, P., Piedbuf, J.-C.: Dynamics of multibody systems using virtual work and symbolic programming. Math. Comput. Model. Dyn. Syst., Methods Tools Appl. Eng. Relat. Sci. 8(2), 137–155 (2002)

    Article  MATH  Google Scholar 

  141. Iltis Data Package, IAVSD Workshop, Herbertov, Czechoslovakia, September 1990

Download references

Acknowledgements

The first author expresses his gratitude to the Portuguese Foundation for Science and Technology through the PhD grant (PD/BD/114154/2016). This work has been supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941. The authors also would like to acknowledge the considerable contributions of Professor Javier Cuadrado from University of A Coruña, Spain, for sharing with us some thoughts and material for the numerical examples of application. Finally, the authors are much indebted to the anonymous reviewers for useful comments, recommendations and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Flores.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, F., Souto, A.P. & Flores, P. On the constraints violation in forward dynamics of multibody systems. Multibody Syst Dyn 39, 385–419 (2017). https://doi.org/10.1007/s11044-016-9530-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-016-9530-y

Keywords

Navigation