Skip to main content

Advertisement

Log in

The Pivotal Role of Astrocytes in the Metabolism of Iron in the Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Iron is essential for the normal functioning of cells but since it is also capable of generating toxic reactive oxygen species, the metabolism of iron is tightly regulated. The present article advances the view that astrocytes are largely responsible for distributing iron in the brain. Capillary endothelial cells are separated from the neuropil by the endfeet of astrocytes, so astrocytes are ideally positioned to regulate the transport of iron to other brain cells and to protect them if iron breaches the blood-brain barrier. Astrocytes do not appear to have a high metabolic requirement for iron yet they possess transporters for transferrin, haemin and non-transferrin-bound iron. They store iron efficiently in ferritin and can export iron by a mechanism that involves ferroportin and ceruloplasmin. Since astrocytes are a common site of abnormal iron accumulation in ageing and neurodegenerative disorders, they may represent a new therapeutic target for the treatment of iron-mediated oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dringen R, Liddell JR, Knorpp T et al (2006) Detoxification of hydrogen peroxide by astrocytes. In: Häussinger D, Kircheis G, Schliess F (eds) Hepathic Encephalopathy and Nitrogen Metabolism, Springer, Dordrecht, The Netherlands, pp 50–59

    Google Scholar 

  2. Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17:83–93

    Article  PubMed  CAS  Google Scholar 

  3. Bishop GM, Robinson SR (2001) Quantitative analysis of cell death and ferritin expression in response to cortical iron: implications for hypoxia-ischemia and stroke. Brain Res 907:175–187

    Article  PubMed  CAS  Google Scholar 

  4. Wu J, Hua MD, Keep RF et al (2003) Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke 34:2964–2969

    Article  PubMed  CAS  Google Scholar 

  5. Lozoff B, Beard J, Connor J et al (2006) Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 64:S34–S43

    Article  PubMed  Google Scholar 

  6. Zecca L, Youdim MB, Riederer P et al (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  PubMed  CAS  Google Scholar 

  7. Bishop GM, Robinson SR, Liu Q et al (2002) Iron: a pathological mediator of Alzheimer’s disease? Dev Neurosci 24:184–187

    Article  PubMed  CAS  Google Scholar 

  8. Lee DW, Andersen JK, Kaur D (2006) Iron dysregulation and neurodegeneration: the molecular connection. Mol Interv 6:89–97

    Article  PubMed  CAS  Google Scholar 

  9. Benarroch EE (2005) Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 80:1326–1338

    Article  PubMed  CAS  Google Scholar 

  10. Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516

    Article  PubMed  CAS  Google Scholar 

  11. Rouault TA, Cooperman S (2006) Brain iron metabolism. Semin Pediatr Neurol 13:142–148

    Article  PubMed  Google Scholar 

  12. Hoepken HH, Korten T, Robinson SR et al (2004) Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate. J Neurochem 88:1194–1202

    Article  PubMed  CAS  Google Scholar 

  13. Liddell JR, Hoepken HH, Crack PJ et al (2006) Glutathione peroxidase 1 and glutathione are required to protect mouse astrocytes from iron-mediated hydrogen peroxide toxicity. J Neurosci Res 84:578–586

    Article  PubMed  CAS  Google Scholar 

  14. Liddell JR, Dringen R, Crack PJ et al (2006) Glutathione peroxidase 1 and a high cellular glutathione concentration are essential for effective organic hydroperoxide detoxification in astrocytes. Glia 54:873–879

    Article  PubMed  Google Scholar 

  15. Donovan A, Roy CN, Andrews NC (2006) The ins and outs of iron homeostasis. Physiology (Bethesda) 21:115–123

    CAS  Google Scholar 

  16. Anderson GJ, Frazer DM (2005) Hepatic iron metabolism. Semin Liver Dis 25:420–432

    Article  PubMed  CAS  Google Scholar 

  17. Shayeghi M, Latunde-Dada GO, Oakhill JS et al (2005) Identification of an intestinal heme transporter. Cell 122:789–801

    Article  PubMed  CAS  Google Scholar 

  18. Mims MP, Prchal JT (2005) Divalent metal transporter 1. Hematology 10:339–345

    Article  PubMed  CAS  Google Scholar 

  19. Torti FM, Torti SV (2002) Regulation of ferritin genes and protein. Blood 99:3505–3516

    Article  PubMed  CAS  Google Scholar 

  20. Ganz T (2005) Cellular iron: ferroportin is the only way out. Cell Metab 1:155–157

    Article  PubMed  CAS  Google Scholar 

  21. Atanasiu V, Manolescu B, Stoian I (2007) Hepcidin – central regulator of iron metabolism. Eur J Haematol 78:1–10

    Article  PubMed  CAS  Google Scholar 

  22. Nemeth E, Ganz T (2006) Regulation of iron metabolism by hepcidin. Annu Rev Nutr 26:323–342

    Article  PubMed  CAS  Google Scholar 

  23. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414

    Article  PubMed  CAS  Google Scholar 

  24. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    Article  PubMed  CAS  Google Scholar 

  25. Riemer J, Hoepken HH, Czerwinska H et al (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331:370–375

    Article  PubMed  CAS  Google Scholar 

  26. Moos T, Oates PS, Morgan EH (1999) Iron-independent neuronal expression of transferrin receptor mRNA in the rat. Mol Brain Res 72:231–234

    Article  PubMed  CAS  Google Scholar 

  27. Jeong SY, David S (2006) Age-related changes in iron homeostasis and cell death in the cerebellum of ceruloplasmin-deficient mice. J Neurosci 26:9810–9819

    Article  PubMed  CAS  Google Scholar 

  28. Qian ZM, To Y, Tang PL et al (1999) Transferrin receptors on the plasma membrane of cultured rat astrocytes. Exp. Brain Res 129:473–476

    Article  PubMed  CAS  Google Scholar 

  29. Swaiman KF, Machen VL (1986) Transferrin binding by mammalian cortical cells. Neurochem Res 11:1241–1248

    Article  PubMed  CAS  Google Scholar 

  30. Qian ZM, Liao QK, To Y et al (2000) Transferrin-bound and transferrin free iron uptake by cultured rat astrocytes. Cell Mol Biol (Noisy-le-Grand) 46:541–548

    CAS  Google Scholar 

  31. Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:27144–27148

    Article  PubMed  CAS  Google Scholar 

  32. Oshiro S, Nozawa K, Cai Y et al (1998) Characterization of a transferrin-independent iron uptake system in rat primary cultured cortical cells. J Med Dent Sci 45:171–176

    PubMed  CAS  Google Scholar 

  33. Takeda A, Devenyi A, Connor JR (1998) Evidence for non-transferrin-mediated uptake and release of iron and manganese in glial cell cultures from hypotransferrinemic mice. J Neurosci Res 51:454–462

    Article  PubMed  CAS  Google Scholar 

  34. Swaiman KF, Machen VL (1985) Iron uptake by glial cells. Neurochem Res 10:1635–1644

    Article  PubMed  CAS  Google Scholar 

  35. Erikson KM, Aschner M (2006) Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter. Neurotoxicology 27:125–130

    Article  PubMed  CAS  Google Scholar 

  36. Burdo JR, Menzies SL, Simpson IA et al (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66:1198–1207

    Article  PubMed  CAS  Google Scholar 

  37. Wang XS, Ong WY, Connor JR (2001) A light and electron microscopic study of the iron transporter protein DMT-1 in the monkey cerebral neocortex and hippocampus. J Neurocytol 30:353–360

    Article  PubMed  Google Scholar 

  38. Moos T, Skjoerringe T, Gosk S et al (2006) Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1. J Neurochem 98:1946–1958

    Article  PubMed  CAS  Google Scholar 

  39. McKie AT, Barrow D, Latunde-Dada GO et al (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291:1755–1759

    Article  PubMed  CAS  Google Scholar 

  40. Vargas JD, Herpers B, McKie AT et al (2003) Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochim Biophys Acta 1651:116–123

    PubMed  CAS  Google Scholar 

  41. Simovich M, Hainsworth LN, Fields PA et al (2003) Localization of the iron transport proteins mobilferrin and DMT-1 in the duodenum: the surprising role of mucin. Am J Hematol 74:32–45

    Article  PubMed  CAS  Google Scholar 

  42. Regan RF, Wang Y, Ma X et al (2001) Activation of extracellular signal-regulated kinases potentiates hemin toxicity in astrocyte cultures. J Neurochem 79:545–555

    Article  PubMed  CAS  Google Scholar 

  43. Ham D, Schipper HM (2000) Heme oxygenase-1 induction and mitochondrial iron sequestration in astroglia exposed to amyloid peptides. Cell Mol Biol (Noisy-le-Grand) 46:587–596

    CAS  Google Scholar 

  44. Schipper HM (2004) Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 37:1995–2011

    Article  PubMed  CAS  Google Scholar 

  45. Schipper HM, Vininsky R, Brull R et al (1998) Astrocyte mitochondria: a substrate for iron deposition in the aging rat substantia nigra. Exp Neurol 152:188–196

    Article  PubMed  CAS  Google Scholar 

  46. Burdo JR, Martin J, Menzies SL et al (1999) Cellular distribution of iron in the brain of the Belgrade rat. Neuroscience 93:1189–1196

    Article  PubMed  CAS  Google Scholar 

  47. Connor JR, Menzies SL, St Martin SM et al (1990) Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 27:595–611

    Article  PubMed  CAS  Google Scholar 

  48. Dickinson TK, Connor JR (1995) Cellular distribution of iron, transferrin, and ferritin in the hypotransferrinemic (Hp) mouse brain. J Comp Neurol 355:67–80

    Article  PubMed  CAS  Google Scholar 

  49. Han J, Day JR, Connor JR et al (2002) H and L ferritin subunit mRNA expression differs in brains of control and iron-deficient rats. J Nutr 132:2769–2774

    PubMed  CAS  Google Scholar 

  50. Papadopoulos MC, Koumenis IL, Yuan TY et al (1998) Increasing vulnerability of astrocytes to oxidative injury with age despite constant antioxidant defenses. Neuroscience 82:915–925

    Article  PubMed  CAS  Google Scholar 

  51. Regan RF, Kumar N, Gao F et al (2002) Ferritin induction protects cortical astrocytes from heme-mediated oxidative injury. Neuroscience 113:985–994

    Article  PubMed  CAS  Google Scholar 

  52. Irace C, Scorziello A, Maffettone C et al (2005) Divergent modulation of iron regulatory proteins and ferritin biosynthesis by hypoxia/reoxygenation in neurones and glial cells. J Neurochem 95:1321–1331

    Article  PubMed  CAS  Google Scholar 

  53. Xu L, Koumenis IL, Tilly JL et al (1999) Overexpression of bcl-xL protects astrocytes from glucose deprivation and is associated with higher glutathione, ferritin, and iron levels. Anesthesiology 91:1036–1046

    Article  PubMed  CAS  Google Scholar 

  54. Wu LJ, Leenders AGM, Cooperman S et al (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood–brain barrier. Brain Res 1001:108–117

    Article  PubMed  CAS  Google Scholar 

  55. Zechel S, Huber-Wittmer K, von Bohlen und Halbach O (2006) Distribution of the iron-regulating protein hepcidin in the murine central nervous system. J Neurosci Res 84:790–800

    Article  PubMed  CAS  Google Scholar 

  56. Patel BN, David S (1997) A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J Biol Chem 272:20185–20190

    Article  PubMed  CAS  Google Scholar 

  57. Kaneko K, Yoshida K, Arima K et al (2002) Astrocytic deformity and globular structures are characteristic of the brains of patients with aceruloplasminemia. J Neuropathol Exp Neurol 61:1069–1077

    PubMed  Google Scholar 

  58. Oide T, Yoshida K, Kaneko K et al (2006) Iron overload and antioxidative role of perivascular astrocytes in aceruloplasminemia. Neuropathol Appl Neurobiol 32:170–176

    Article  PubMed  CAS  Google Scholar 

  59. Sohal RS, Wennberg-Kirch E, Jaiswal K et al (1999) Effect of age and caloric restriction on bleomycin-chelatable and nonheme iron in different tissues of C57BL/6 mice. Free Radic Biol Med 27:287–293

    Article  PubMed  CAS  Google Scholar 

  60. Deng XH, Bertini G, Xu YZ et al (2006) Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced old age. Neuroscience 141:645–661

    Article  PubMed  CAS  Google Scholar 

  61. Weiss G (2005) Modification of iron regulation by the inflammatory response. Best Prac Res Clin Haem 18:183–201

    Article  CAS  Google Scholar 

  62. Fillebeen C, Dehouck B, Benaissa M et al (2000) Tumor necrosis factor-alpha increases lactoferrin transcytosis through the blood-brain barrier. J Neurochem 73:2491–2500

    Article  Google Scholar 

  63. Kuhlow CJ, Krady JK, Basu A et al (2003) Astrocytic ceruloplasmin expression, which is induced by IL-1beta and by traumatic brain injury, increases in the absence of the IL-1 type 1 receptor. Glia 44:76–84

    Article  PubMed  Google Scholar 

  64. Castelnau PA, Garrett RS, Palinski W et al (1998) Abnormal iron deposition associated with lipid peroxidation in transgenic mice expressing interleukin-6 in the brain. J Neuropathol Exp Neurol 57:268–282

    PubMed  CAS  Google Scholar 

  65. Garrick MD, Dolan KG, Horbinski C et al (2003) DMT1: a mammalian transporter for multiple metals. Biometals 16:41–54

    Article  PubMed  CAS  Google Scholar 

  66. Tiffany-Castiglioni E, Qian Y (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 22:577–592

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RD was supported by a NeuroSciences Victoria Senior Research Fellowship. GMB is supported by a National Health and Medical Research Council Peter Doherty Fellowship (ID:284393) and a Clive and Vera Ramaciotti Foundation Establishment Grant. SRR and RD are supported by a National Health and Medical Research Council Project Grant (ID: 334129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dringen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dringen, R., Bishop, G.M., Koeppe, M. et al. The Pivotal Role of Astrocytes in the Metabolism of Iron in the Brain. Neurochem Res 32, 1884–1890 (2007). https://doi.org/10.1007/s11064-007-9375-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9375-0

Keywords

Navigation