Skip to main content
Log in

Guanidinoacetate Decreases Antioxidant Defenses and Total Protein Sulfhydryl Content in Striatum of Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited neurometabolic disorder biochemically characterized by tissue accumulation of guanidinoacetate (GAA) and depletion of creatine. Affected patients present epilepsy and mental retardation whose pathogeny is unclear. In the present study we investigated the in vitro and in vivo (intrastriatal administration) effects of GAA on some oxidative stress parameters in rat striatum. Sixty-day-old rats were used for intrastriatal infusion of GAA. For the in vitro studies, 60-day-old Wistar rats were killed by decapitation and the striatum was pre-incubated for 1 h at 37°C in the presence of GAA at final concentrations ranging from 10 to 100 μM. Parameters of oxidative stress such as total radical-trapping antioxidant potential (TRAP), antioxidant enzymes (SOD, GPx, and CAT), protein carbonyl and thiol contents were measured. DNA damage was also evaluated. Results showed that GAA administration (in vivo studies) or the addition of 100 μM GAA to assays (in vitro studies) significantly decreased TRAP, SOD activity, and total thiol levels in rat striatum. In contrast, this guanidino compound did not alter protein carbonyl content and the activities of CAT and GPx. DNA damage was not found after intrastriatal administration of GAA. The data indicate that the metabolite accumulating in GAMT deficiency decreases antioxidant capacity and total thiol content in the striatum. It is therefore presumed that this pathomechanism may contribute at least in part to the pathophysiology of the brain injury observed in patients affected by GAMT deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Von Figura K, Hanefeld F, Isbrandt D, Stöckler-Ipsiroglu S (2001) Guanidinoacetate methyltransferase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds), The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1897–1908

    Google Scholar 

  2. Leuzzi V, Bianchi MC, Tosetti M, Carducci C, Cerquiglini CA, Cioni G, Antonozzi I (2000) Brain creatine depletion: guanidinoacetate methyltransferase deficiency (improving with creatine supplementation). Neurology 55:1407–1409

    PubMed  CAS  Google Scholar 

  3. Neu A, Neuhoff H, Trube G, Fehr S, Ullrich K, Roeper J, Isbrandt D (2002) Activation of GABAA receptors by guanidinoacetate: a novel pathophysiological mechanism. Neurobiol Dis 11:298–307

    Article  PubMed  CAS  Google Scholar 

  4. Hiramatsu M, Ohba S, Edamatsu R, Kadowari D, Mori A (1992) Effect of guanidino compounds on membrane fluidity of rats synaptosomes. In: De Deyn PP, Marescau IA, Quereshi SD, Mori A (eds) Guanidino compounds in biology and medicine, vol 1. John Libbey & Company Lta, Guildford, UK, pp 387–393

    Google Scholar 

  5. Schulze A, Ebinger F, Rating D, Mayaetepek E (2001) Improving treatment of guanidinoacetate methyltransferase deficiency: reduction of guanidinoacetic acid in body fluids by arginine restriction and ornithine supplementation. Mol Genet Metab 74:413–419

    Article  PubMed  CAS  Google Scholar 

  6. Schulze A (2003) Creatine deficiency syndromes. Mol Cell Biochem 244:143–150

    Article  PubMed  CAS  Google Scholar 

  7. Sykut-Cegielska J, Gradowska W, Mercimek-Mahmutoglu S, Stockler-Ipsiroglu S (2004) Biochemical and clinical characteristics of creatine deficiency syndromes. Acta Biochim Pol 51:875–882

    PubMed  CAS  Google Scholar 

  8. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  9. Reznick AZ, Packer L (1993) Free radicals and antioxidants in muscular neurological diseases and disorders. In: Poli G, Albano E, Dianzani MU (eds) Free radicals: from basic science to medicine. Birkhäuser, Basel, pp 425–437

  10. Halliwell B (1996) Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem Soc Trans 24:1023–1027

    PubMed  CAS  Google Scholar 

  11. Zugno AI, Scherer EBS, Schuck PF, Oliveira DL, Wofchuk S, Wannmacher CMD, Wajner M, Wyse ATS (2006) Intrastriatal administration of guanidinoacetate inhibits Na+,K+-ATPase and creatine kinase activities in rat striatum. Met Brain Dis 21:41–50

    CAS  Google Scholar 

  12. Mori A, Kohno M, Masumizu T, Nosa Y, Packer I (1996) Guanidino compounds generate reactive oxygen species. Biochem Mol Biol Int 40:135–143

    PubMed  CAS  Google Scholar 

  13. Zugno AI, Franzon R, Chiarani F, Bavaresco CS, Wannmacher CMD, Wajner M, Wyse ATS (2004) Evaluation of the mechanism underlying the inhibitory effect of guanidinoacetate on brain Na+,K+-ATPase activity. Int J Dev Neurosci 22:191–196

    Article  PubMed  CAS  Google Scholar 

  14. Lissi E, Pascual C, Del Castillo MD (1992) Luminol luminescence induced by 2,2’-azo-bis-(2-amidinopropane) thermolysis. Free Rad Res Commun 17:299–311

    Article  CAS  Google Scholar 

  15. Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook for oxygen radical research. CRC Press, Boca Raton, pp 243–247

    Google Scholar 

  16. Aebi H (1984) Catalase, in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  17. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332

    Article  PubMed  CAS  Google Scholar 

  18. Aksenov MY, Markesbery WR (2001) Change in thiol content and expression of glutathione redox system gene in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  PubMed  CAS  Google Scholar 

  19. Stadtman EA (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 9:315–325

    Article  PubMed  CAS  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  21. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  PubMed  CAS  Google Scholar 

  22. Collins AR, Ma AG, Duthie SJ (1995) The kinectics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidies) in human cells. Mutat Res 30:69–77

    Google Scholar 

  23. Collins A, Dusinska M, Franklin M, Somorovska M, Petrovska H, Duthie S, Fillion L, Panayiutidis M, Raslova K, Vaughan N (1997) Comet assay in human biomonitoring studies: reliability, validation, and applications. Environ Mol Mutagen 30:139–146

    Article  PubMed  CAS  Google Scholar 

  24. Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448

    Article  PubMed  CAS  Google Scholar 

  25. Matte C, Monteiro SC, Calcagnotto T, Bavaresco CS, Netto CA, Wyse AT (2004) In vivo and in vitro effects of homocysteine on Na+, K+-ATPase activity in parietal, prefrontal and cingulate cortex of young rats. Int J Dev Neurosci 22:185–190

    Article  PubMed  CAS  Google Scholar 

  26. Delwing D, Cornelio AR, Wajner M, Wannmacher CM, Wyse AT (2007) Arginine administration reduces creatine kinase activity in rat cerebellum. Metab Brain Dis 22:13–23

    Article  PubMed  CAS  Google Scholar 

  27. Wyse AT, Stefanello FM, Chiarani F, Delwing D, Wannmacher CM, Wajner M (2004) Arginine administration decreases cerebral cortex acetylcholinesterase and serum butyrylcholinesterase probably by oxidative stress induction. Neurochem Res 29:385–389

    Article  PubMed  CAS  Google Scholar 

  28. Flora SJ (2007) Role of free radicals and antioxidants in health and disease. Cell Mol Biol 53:1–2

    PubMed  CAS  Google Scholar 

  29. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases. Therapeutic implications for antioxidant treatment. Drug Aging 18:685–716

    Article  CAS  Google Scholar 

  30. Halliwell B, Gutteridge JC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, New York, pp 1–851

    Google Scholar 

  31. Lissy E, Salim-Hanna M, Pascual C, Del Castillo MD (1995) Evaluation of total antioxidant potencial (TRAP) and total reactivity from luminol-enhanced chemiluminescence measurements. Free Rad Med 18:153–158

    Article  Google Scholar 

  32. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potencial (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  PubMed  CAS  Google Scholar 

  33. Konorev EA, Kalyanaraman B, Hogg N (2000) Modification of creatine kinase by S-nitrosothiols: S-nitrosation vs. S-thiolation. Free Radic Biol Med 28:1671–1678

    Article  PubMed  CAS  Google Scholar 

  34. Koufen P, Stark G, (2000) Free radical induced inactivation of creatine kinase: sites of interaction, protection, and recovery. Biochim Biophys Acta 1501:44–50

    PubMed  CAS  Google Scholar 

  35. Carageorgio H, Tzotzes V, Pantos C, Mourouzis C, Zarros A, Tsakiris S (2004) In vivo and in vitro effects of cadmium on adult rat brain total antioxidant status, acetylcholinesterase, (Na+, K+)-ATPase and Mg2+-ATPase activities: protection by L-cysteine. Basic Clin Pharmacol Toxicol 94:112–118

    Article  Google Scholar 

  36. Badisa VL, Latinwo LM, Odewumi CO, Ikediobi CO, Badisa RB, Ayuk-Takem LT, Nwoga J, West J (2007) Mechanism of DNA damage by cadmium and interplay of antioxidant enzymes and agents. Environ Toxicol 22:144–151

    Article  PubMed  CAS  Google Scholar 

  37. Tsutsui H, Ide T, Kinigawa S (2006) Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxid Redox Signal 8:1737–1744

    Article  PubMed  CAS  Google Scholar 

  38. Xie J, Fan R, Meng Z (2007) Protein oxidation and DNA-protein crosslink induced by sulfur dioxide in lungs, livers, and hearts from mice. Inhal Toxicol 19:759–765

    Article  PubMed  CAS  Google Scholar 

  39. Frenzilli G, Sarcelli V, Fornai F, Paparelli A, Nigro M (2006) The comet assay as a method of assesment of neurotoxocity: usefulness for drugs of abuse. Ann NY Acad Sci 1074:478–481

    Article  PubMed  CAS  Google Scholar 

  40. Freeman B, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426

    PubMed  CAS  Google Scholar 

  41. Lawer JM, Song W (2000) Specificity of antioxidant enzyme inhibition in skeletal muscle to reative nitrogen species donors. Biochem Biophys Res Commun 294:1093–1100

    Article  CAS  Google Scholar 

  42. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Gluthatione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    Article  PubMed  CAS  Google Scholar 

  43. Hiramatsu M (2003) A role for guanidino compounds in the brain. Mol Cell Biochem 244:57–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Brazil) and by the FINEP Research Grant “Rede Instituto Brasileiro de Neurociência (IBN-Net)—# 01.06.0842-00.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zugno, A.I., Stefanello, F.M., Scherer, E.B.S. et al. Guanidinoacetate Decreases Antioxidant Defenses and Total Protein Sulfhydryl Content in Striatum of Rats. Neurochem Res 33, 1804–1810 (2008). https://doi.org/10.1007/s11064-008-9636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9636-6

Keywords

Navigation