Skip to main content

Advertisement

Log in

Curcumin Protects Dopaminergic Neuron Against LPS Induced Neurotoxicity in Primary Rat Neuron/Glia Culture

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Using primary rat mesencephalic neuron-glia cultures as an in vitro model of Parkinson’s disease (PD), we tested the effect of curcumin, a natural dietary pigment with well-known anti-inflammation effects, on dopaminergic (DA) degeneration. Curcumin pretreatment mitigated LPS-induced DA neurotoxicity in a concentration-dependent manner and curcumin post-treatment also showed protective effect. Microglia depletion abolished this protective effect of curcumin, indicating that microglia play an important role in this effect. Supportively, observation by immunocytochemistry staining using OX-42 antibody showed that curcumin treatment inhibited LPS-induced morphological change of microglia. Besides, LPS-induced production of many proinflammatory factors and their gene expressions decreased dramatically after curcumin treatment. Results also revealed that curcumin treatment decreased LPS-induced activation of two transcription factors—nuclear factors κB (NF-κB) and activator protein-1 (AP-1). Taken together, our study implicated that curcumin might be a potential preventive and therapeutic strategy for inflammation-related neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015

    PubMed  CAS  Google Scholar 

  2. McGeer EG, Klegeris A, McGeer PL (2005) Inflammation, the complement system and the diseases of aging. Neurobiol Aging 26(Suppl 1):94–97

    Article  PubMed  CAS  Google Scholar 

  3. Bruck W, Stadelmann C (2003) Inflammation and degeneration in multiple sclerosis. Neurol Sci 24(Suppl 5):S265–S267

    Article  PubMed  Google Scholar 

  4. Barouch FC, Miller JW (2007) The role of inflammation and infection in age-related macular degeneration. Int Ophthalmol Clin 47:185–197

    Article  PubMed  Google Scholar 

  5. Hald A, Van Beek J, Lotharius J (2007) Inflammation in Parkinson’s disease: causative or epiphenomenal? Subcell Biochem 42:249–279

    Article  PubMed  Google Scholar 

  6. Wilms H, Zecca L, Rosenstiel P, Sievers J, Deuschl G, Lucius R (2007) Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr Pharm Des 13:1925–1928

    Article  PubMed  CAS  Google Scholar 

  7. McGeer PL, Itagaki S, Akiyama H, McGeer EG (1988) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24:574–576

    Article  PubMed  CAS  Google Scholar 

  8. Brown DR (2001) Microglia and prion disease. Microsc Res Tech 54:71–80

    Article  PubMed  CAS  Google Scholar 

  9. Brown DR, Kretzschmar HA (1997) Microglia and prion disease: a review. Histol Histopathol 12:883–892

    PubMed  CAS  Google Scholar 

  10. Giese A, Brown DR, Groschup MH, Feldmann C, Haist I, Kretzschmar HA (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol 8:449–457

    Article  PubMed  CAS  Google Scholar 

  11. Akiyama H, McGeer PL (1989) Microglial response to 6-hydroxydopamine-induced substantia nigra lesions. Brain Res 489:247–253

    Article  PubMed  CAS  Google Scholar 

  12. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297

    Article  PubMed  CAS  Google Scholar 

  13. Gao HM, Hong JS, Zhang W, Liu B (2003) Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. J Neurosci 23:1228–1236

    PubMed  CAS  Google Scholar 

  14. Daniel S, Limson JL, Dairam A, Watkins GM, Daya S (2004) Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J Inorg Biochem 98:266–275

    Article  PubMed  CAS  Google Scholar 

  15. Shih PC, Lee HH, Lai SC, Chen KM, Jiang ST, Chen YF, Shiow SJ (2007) Efficacy of curcumin therapy against Angiostrongylus cantonensis-induced eosinophilic meningitis. J Helminthol 81:1–5

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki M, Nakamura T, Iyoki S, Fujiwara A, Watanabe Y, Mohri K, Isobe K, Ono K, Yano S (2005) Elucidation of anti-allergic activities of curcumin-related compounds with a special reference to their anti-oxidative activities. Biol Pharm Bull 28:1438–1443

    Article  PubMed  CAS  Google Scholar 

  17. Chan MM, Huang HI, Fenton MR, Fong D (1998) In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55:1955–1962

    Article  PubMed  CAS  Google Scholar 

  18. Chen HW, Kuo HT, Chai CY, Ou JL, Yang RC (2007) Pretreatment of curcumin attenuates coagulopathy and renal injury in LPS-induced endotoxemia. J Endotoxin Res 13:15–23

    Article  PubMed  CAS  Google Scholar 

  19. Ferguson LR, Philpott M (2007) Cancer prevention by dietary bioactive components that target the immune response. Curr Cancer Drug Targets 7:459–464

    Article  PubMed  CAS  Google Scholar 

  20. Kuhad A, Pilkhwal S, Sharma S, Tirkey N, Chopra K (2007) Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. J Agric Food Chem 55:10150–10155

    Article  PubMed  CAS  Google Scholar 

  21. Sawada H, Ibi M, Kihara T, Honda K, Nakamizo T, Kanki R, Nakanishi M, Sakka N, Akaike A, Shimohama S (2002) Estradiol protects dopaminergic neurons in a MPP+ Parkinson’s disease model. Neuropharmacology 42:1056–1064

    Article  PubMed  CAS  Google Scholar 

  22. Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125

    Article  PubMed  CAS  Google Scholar 

  23. Rajeswari A (2006) Curcumin protects mouse brain from oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Eur Rev Med Pharmacol Sci 10:157–161

    PubMed  CAS  Google Scholar 

  24. Liu B, Du L, Hong JS (2000) Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 293:607–617

    PubMed  CAS  Google Scholar 

  25. Gao HM, Hong JS, Zhang W, Liu B (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22:782–790

    PubMed  CAS  Google Scholar 

  26. Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279:1415–1421

    Article  PubMed  CAS  Google Scholar 

  27. Yang S, Yang J, Yang Z, Chen P, Fraser A, Zhang W, Pang H, Gao X, Wilson B, Hong JS, Block ML (2006) Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP4-6 are neuroprotective through inhibition of NADPH oxidase: potent regulators of microglia-mediated oxidative stress. J Pharmacol Exp Ther 319:595–603

    Article  PubMed  CAS  Google Scholar 

  28. Shimamura T, Fujimura Y, Ukeda H (2007) Electron spin resonance analysis of superoxide anion radical scavenging activity with spin trapping agent, Diphenyl-PMPO. Anal Sci 23:1233–1235

    Article  PubMed  CAS  Google Scholar 

  29. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  30. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  PubMed  CAS  Google Scholar 

  31. Gao HM, Liu B, Zhang W, Hong JS (2003) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. Faseb J 17:1954–1956

    PubMed  CAS  Google Scholar 

  32. Aloisi F (1999) The role of microglia and astrocytes in CNS immune surveillance and immunopathology. Adv Exp Med Biol 468:123–133

    PubMed  CAS  Google Scholar 

  33. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  PubMed  CAS  Google Scholar 

  34. Gao HM, Liu B, Zhang W, Hong JS (2003) Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. Faseb J 17:1957–1959

    PubMed  CAS  Google Scholar 

  35. Jeohn GH, Kim WG, Hong JS (2000) Time dependency of the action of nitric oxide in lipopolysaccharide-interferon-gamma-induced neuronal cell death in murine primary neuron-glia co-cultures. Brain Res 880:173–177

    Article  PubMed  CAS  Google Scholar 

  36. Estevez AG, Jordan J (2002) Nitric oxide and superoxide, a deadly cocktail. Ann N Y Acad Sci 962:207–211

    Article  PubMed  CAS  Google Scholar 

  37. Xie Z, Wei M, Morgan TE, Fabrizio P, Han D, Finch CE, Longo VD (2002) Peroxynitrite mediates neurotoxicity of amyloid beta-peptide1-42- and lipopolysaccharide-activated microglia. J Neurosci 22:3484–3492

    PubMed  CAS  Google Scholar 

  38. Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 11:999–1016

    Article  PubMed  CAS  Google Scholar 

  39. Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl:373–381

    Article  Google Scholar 

  40. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5:554–559

    Article  PubMed  CAS  Google Scholar 

  41. O’Neill LA, Kaltschmidt C (1997) NF-kappaB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20:252–258

    Article  PubMed  CAS  Google Scholar 

  42. Grilli M, Memo M (1999) Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ 6:22–27

    Article  PubMed  CAS  Google Scholar 

  43. Bethea JR, Castro M, Keane RW, Lee TT, Dietrich WD, Yezierski RP (1998) Traumatic spinal cord injury induces nuclear factor-kappaB activation. J Neurosci 18:3251–3260

    PubMed  CAS  Google Scholar 

  44. Clemens JA, Stephenson DT, Dixon EP, Smalstig EB, Mincy RE, Rash KS, Little SP (1997) Global cerebral ischemia activates nuclear factor-kappa B prior to evidence of DNA fragmentation. Brain Res Mol Brain Res 48:187–196

    Article  PubMed  CAS  Google Scholar 

  45. Nurmi A, Lindsberg PJ, Koistinaho M, Zhang W, Juettler E, Karjalainen-Lindsberg ML, Weih F, Frank N, Schwaninger M, Koistinaho J (2004) Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke 35:987–991

    Article  PubMed  Google Scholar 

  46. Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 94:7531–7536

    Article  PubMed  CAS  Google Scholar 

  47. Kaltschmidt B, Uherek M, Volk B, Baeuerle PA, Kaltschmidt C (1997) Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci USA 94:2642–2647

    Article  PubMed  CAS  Google Scholar 

  48. Terai K, Matsuo A, McGeer PL (1996) Enhancement of immunoreactivity for NF-kappaB in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Res 735:159–168

    Article  PubMed  CAS  Google Scholar 

  49. Gius D, Botero A, Shah S, Curry HA (1999) Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1. Toxicol Lett 106:93–106

    Article  PubMed  CAS  Google Scholar 

  50. Li G, Cui G, Tzeng NS, Wei SJ, Wang T, Block ML, Hong JS (2005) Femtomolar concentrations of dextromethorphan protect mesencephalic dopaminergic neurons from inflammatory damage. Faseb J 19:489–496

    Article  PubMed  CAS  Google Scholar 

  51. Liu B, Qin L, Yang SN, Wilson BC, Liu Y, Hong JS (2001) Femtomolar concentrations of dynorphins protect rat mesencephalic dopaminergic neurons against inflammatory damage. J Pharmacol Exp Ther 298:1133–1141

    PubMed  CAS  Google Scholar 

  52. Liu Y, Qin L, Li G, Zhang W, An L, Liu B, Hong JS (2003) Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther 305:212–218

    Article  PubMed  CAS  Google Scholar 

  53. Peng GS, Li G, Tzeng NS, Chen PS, Chuang DM, Hsu YD, Yang S, Hong JS (2005) Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Brain Res Mol Brain Res 134:162–169

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jau-Shyong Hong.

Additional information

Special issue article in honor of Dr. Ji-Sheng Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Zhang, D., Yang, Z. et al. Curcumin Protects Dopaminergic Neuron Against LPS Induced Neurotoxicity in Primary Rat Neuron/Glia Culture. Neurochem Res 33, 2044–2053 (2008). https://doi.org/10.1007/s11064-008-9675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9675-z

Keywords

Navigation