Skip to main content
Log in

Myelin Lipid Abnormalities in the Aspartoacylase-Deficient Tremor Rat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The high concentration of N-acetylaspartate (NAA) in neurons of the central nervous system and its growing clinical use as an indicator of neuronal viability has intensified interest in the biological function of this amino acid derivative. The biomedical relevance of such inquiries is highlighted by the myelin-associated pathology of Canavan disease, an inherited childhood disorder resulting from mutation of aspartoacylase (ASPA), the NAA-hydrolyzing enzyme. This enzyme is known to be localized in oligodendrocytes with bimodal distribution in cytosol and the myelin sheath, and to produce acetyl groups utilized in myelin lipid synthesis. Loss of this acetyl source in Canavan disease and rodent models such as the tremor rat are thought to account for the observed myelin deficit. This study was undertaken to further define and quantify the specific lipid abnormalities that occur as a result of ASPA deficit in the tremor rat. Employing mass spectrometry together with high performance thin-layer chromatography, we found that myelin from 28-day-old animals showed major reduction in cerebrosides (CB) and sulfatides (Sulf) with unsubstituted fatty acids, and equal if not greater changes in myelin from 7-month-old tremors. Cerebrosides with 2-hydroxyfatty acids showed little if any change at either age; Sulf with 2-hydroxyfatty acids showed no significant change at 28 days, but surprisingly a major increase at 7 months. Two species of phosphatidylcholine, 32:0 and 34:1, also showed significant increase, but only at 28 days. One form of phosphatidylethanolamine, PE36:1, was reduced a modest amount at both ages, whereas the plasmalogen form did not change. The dysmyelination that results from inactivation of ASPA is thus characterized by selective decreases as well as some increases in specific lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASPA:

Aspartoacylase

BHT:

2,6-di-tert-butyl-4-methylphenol

C:

Chloroform

CB:

Cerebrosides

CNS:

Central nervous system

EPG:

Ethanolamine phosphoglyceride

HT:

Heterozygote

HPTLC:

High performance thin-layer chromatography

MALDI-TOFMS:

Matrix-assisted laser desorption/ionization—time of flight mass spectrometry

M:

Methanol

NAA:

N-acetylaspartate

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

Sulf:

Sulfatide

TM:

Tremor rat

WT:

Wild type

References

  1. Yamada J, Serikawa T, Ishiko J et al (1985) Rats with congenital tremor and curled whiskers and hair. Jikken Dobutsu 34:183–188

    PubMed  CAS  Google Scholar 

  2. Kitada K, Akimitsu T, Shigematsu Y et al (2000) Accumulation of N-acetyl-l-aspartate in the brain of the tremor rat, a mutant exhibiting absence-like seizure and spongiform degeneration in the central nervous system. J Neurochem 74:2512–2519

    Article  PubMed  CAS  Google Scholar 

  3. Matalon R, Michals K, Kaul R (1995) Canavan disease: from spongy degeneration to molecular analysis. J Pediat 127:511–517

    Article  PubMed  CAS  Google Scholar 

  4. Janson CG, McPhee SW, Francis J et al (2006) Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1H-MRS) and diffusion-weighted MRI. Neuropediatr 37:209–221

    Article  CAS  Google Scholar 

  5. Matalon R, Rady PL, Platt KA et al (2000) Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system. J Gene Med 2:165–175

    Article  PubMed  CAS  Google Scholar 

  6. D’Adamo AF, Yatsu FM (1966) Acetate metabolism in the nervous system. N-Acetyl-l-aspartic acid and the biosynthesis of brain lipids. J Neurochem 13:961–963

    Article  PubMed  CAS  Google Scholar 

  7. Burri R, Steffen C, Herschkowitz N (1991) N-Acetyl-l-aspartate is a major source of acetyl groups for lipid lsynthesis during rat brain development. Dev Neurosci 13:403–411

    Article  PubMed  CAS  Google Scholar 

  8. Mehta V, Namboodiri MAA (1995) N-Acetylaspartate as an acetyl source in the nervous system. Mol Brain Res 31:151–157

    Article  PubMed  CAS  Google Scholar 

  9. Chakraborty G, Mekala P, Yahya D et al (2001) Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 78:736–745

    Article  PubMed  CAS  Google Scholar 

  10. Patel TB, Clark JB (1979) Synthesis of N-acetyl-l-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J 184:539–546

    PubMed  CAS  Google Scholar 

  11. Truckenmiller ME, Namboodiri MA, Brownstein MJ, Neale JH (1985) N-Acetylation of l-aspartate in the nervous system: differential distribution of a specific enzyme. J Neurochem 45:1658–1662

    Article  PubMed  CAS  Google Scholar 

  12. Baslow MH, Suckow RF, Sapirstein V, Hungund BL (1999) Expression of aspartoacylase activity in cultured rat macroglial cells is limited to oligodendrocytes. J Mol Neurosci 13:47–53

    Article  PubMed  CAS  Google Scholar 

  13. Kirmani BF, Jacobowitz DM, Namboodiri MAA (2003) Developmental increase of aspartoacylase in oligodendrocytes parallels CNS myelination. Dev Brain Res 140:105–115

    Article  CAS  Google Scholar 

  14. Wang J, Matalon R, Bhatia G et al (2007) Bimodal occurrence of aspartoacylase in myelin and cytosol of brain. J Neurochem 101:448–457

    Article  PubMed  CAS  Google Scholar 

  15. Norton WT, Cammer W (1984) Isolation and characterization of myelin. In: Morell P (ed) myelin. Plenum Press, New York, pp 147–195

    Google Scholar 

  16. Ledeen RW (1992) Enzymes and receptors of myelin. In: Martensen RE (ed) Myelin: biology and chemistry. CRC Press, Boca Raton, pp 527–566

    Google Scholar 

  17. Chakraborty G, Ledeen RW (2003) Fatty acid synthesizing enzymes intrinsic to myelin. Brain Res Mol Brain Res 112:46–52

    Article  PubMed  CAS  Google Scholar 

  18. Madhavarao CN, Arun P, Moffett JR et al (2005) Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. Proc Natl Acad Sci USA 102:5221–5226

    Article  PubMed  CAS  Google Scholar 

  19. Ledeen RW, Wang J, Wu G et al (2006) Physiological role of N-acetylaspartate: contribution to myelinogenesis. Adv Experim Med Biol 576:131–143

    Article  CAS  Google Scholar 

  20. Lees M, Paxman S (1972) Modification of the Lowry procedure for analysis of proteolipid protein. Anal Biochem 47:184–192

    Article  PubMed  CAS  Google Scholar 

  21. Ledeen RW, Yu RK (1982) Gangliosides: structure, isolation, and analysis. Methods Enzymol 83:139–192

    Article  PubMed  CAS  Google Scholar 

  22. O’Brien JS, Sampson EL (1965) Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J Lipid Res 6:545–551

    PubMed  CAS  Google Scholar 

  23. O’Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6:537–544

    PubMed  CAS  Google Scholar 

  24. Marcus J, Popko B (2002) Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim Biophys Acta 1573:406–413

    PubMed  CAS  Google Scholar 

  25. DeVries GH, Norton WT, Raine CS (1972) Axons: isolation from mammalian central nervous system. Science 172:1370–1372

    Article  Google Scholar 

  26. Kondo A, Nagara H, Akazawa K et al (1991) CNS pathology in the neurological mutant rats zitter, tremor and zitter-tremor double mutant (spontaneously epilelptic rat, SER). Brain 114:979–999

    Article  PubMed  Google Scholar 

  27. Francis JS, Olariu A, McPhee SW, Leone P (2006) Novel role for aspartoacylase in regulation of BDNF and timing of postnatal oligodendrogenesis. J Neurosci Res 84:151–169

    Article  PubMed  CAS  Google Scholar 

  28. Costantino-Ceccarini E, Suzuki K (1975) Evidence for the presence of UDP-galactose: ceramide galactosyltransferase in rat myelin. Brain Res 93:358–362

    Article  PubMed  CAS  Google Scholar 

  29. Jackson SN, Wang HY, Woods AS (2005) Direct profiling of lipids distribution in brain tissue using MALDI-TOFMS. Anal Chem 77:4523–4527

    Article  PubMed  CAS  Google Scholar 

  30. Yurkova I, Kisel M, Arnhold J, Shadyro O (2005) Free-radical fragmentation of galactocerebrosides: a MALDI-TOF mass spectrometry study. Chem Phys Lipids 134:41–49

    Article  PubMed  CAS  Google Scholar 

  31. Ishibashi T, Dupree JL, Ikenaka K et al (2002) A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 22:6507–6514

    PubMed  CAS  Google Scholar 

  32. Farooqui AA, Horrocks LA (2001) Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. The Neuroscientist 7:232–245

    Article  PubMed  CAS  Google Scholar 

  33. Jalil MA, Begum L, Contreras L et al (2005) Reduced N-acetylaspartate levels in mice lacking aralar, a brain- and muscle-type mitochondrial aspartate-glutamate carrier. J Biol Chem 280:31333–31339

    Article  PubMed  CAS  Google Scholar 

  34. Tsai G, Coyle JT (1995) N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 46:531–540

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Multiple Sclerosis Society, PP1008 (RWL), Jacob’s Cure: A Fight Against Canavan Disease (RWL), and The National Institutes of Health, USA, NS046593 (HL). We are grateful to the National BioResource Project for the Rat in Japan (http://www.anim.med.kyoto-u.ac.jp/NBR/) for providing tremor rats.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Ledeen.

Additional information

Special issue article in honor of Dr. George DeVries.

Fatty acid designations (e.g. 18:1) indicate carbon number and number of double bonds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Leone, P., Wu, G. et al. Myelin Lipid Abnormalities in the Aspartoacylase-Deficient Tremor Rat. Neurochem Res 34, 138–148 (2009). https://doi.org/10.1007/s11064-008-9726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9726-5

Keywords

Navigation