Skip to main content

Advertisement

Log in

Comparison of Nitrogen Narcosis and Helium Pressure Effects on Striatal Amino Acids: A Microdialysis Study in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Exposure to nitrogen–oxygen mixture at high pressure induces narcosis, which can be considered as a first step toward general anaesthesia. Narcotic potencies of inert gases are attributed to their lipid solubility. Nitrogen narcosis induces cognitive and motor disturbances that occur from 0.3 MPa in man and from 1 MPa in rats. Neurochemical studies performed in rats up to 3 MPa have shown that nitrogen pressure decreases striatal dopamine release like argon, another inert gas, or nitrous oxide, an anaesthetic gas. Striatal dopamine release is under glutamatergic and other amino acid neurotransmission regulations. The aim of this work was to study the effects of nitrogen at 3 MPa on striatal amino acid levels and to compare to those of 3 MPa of helium which is not narcotic at this pressure, by using a new technique of microdialysis samples extraction under hyperbaric conditions, in freely moving rats. Amino acids were analysed by HPLC coupled to fluorimetric detection in order to appreciate glutamate, aspartate, glutamine and asparagine levels. Nitrogen–oxygen mixture exposure at 3 MPa decreased glutamate, glutamine and asparagine concentrations. In contrast, with helium–oxygen mixture, glutamate and aspartate levels were increased during the compression phase but not during the stay at maximal pressure. Comparison between nitrogen and helium highlighted the narcotic effects of nitrogen at pressure. As a matter of fact, nitrogen induces a reduction in glutamate and in other amino acids that could partly explain the decrease in striatal dopamine level as well as the motor and cognitive disturbances reported in nitrogen narcosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett PB, Rostain JC (2003) Inert gas narcosis. In: Brubbakk AO, Neuman TS (eds) Bennett and Elliott’s physiology and medicine of diving. Saunders Company Ltd., London, pp 300–322

    Google Scholar 

  2. Abraini J, Rostain JC, Kriem B (1998) Sigmoidal compression rate-dependence of inert gas narcotic potency in rats: implication for lipid vs. protein theories of inert gas action in the central nervous system. Brain Res 808:300–304. doi:10.1016/S0006-8993(98)00760-4

    Article  PubMed  CAS  Google Scholar 

  3. Bennett PB, Rostain JC (2003) The high pressure nervous syndrome. In: Brubakk AO, Neuman TS (eds) Bennett and Elliott’s physiology and medicine of diving, 5th edn. Saunders, London, pp 323–357

    Google Scholar 

  4. Miller KW, Paton WD, Smith EB et al (1973) The pressure reversal of general anesthesia and the critical volume hypothesis. Mol Pharmacol 9:131–143

    PubMed  CAS  Google Scholar 

  5. Balon N, Kriem B, Weiss M et al (2002) Indirect presynaptic modulation of striatal dopamine release by GABA(B) receptors in the rat substantia nigra. Neurosci Lett 325:33–36. doi:10.1016/S0304-3940(02)00226-4

    Article  PubMed  CAS  Google Scholar 

  6. Barthelemy-Requin M, Semelin P, Risso JJ (1994) Effect of nitrogen narcosis on extracellular levels of dopamine and its metabolites in the rat striatum, using intracerebral microdialysis. Brain Res 667:1–5. doi:10.1016/0006-8993(94)91706-X

    Article  PubMed  CAS  Google Scholar 

  7. Dedieu D, Balon N, Weiss M et al (2004) Microdialysis study of striatal dopaminergic dysfunctions induced by 3 MPa of nitrogen- and helium–oxygen breathing mixtures in freely moving rats. Brain Res 998:202–207. doi:10.1016/j.brainres.2003.11.026

    Article  PubMed  CAS  Google Scholar 

  8. Balon N, Kriem B, Dousset E et al (2002) Opposing effects of narcotic gases and pressure on the striatal dopamine release in rats. Brain Res 947:218–224. doi:10.1016/S0006-8993(02)02928-1

    Article  PubMed  CAS  Google Scholar 

  9. Balon N, Dupenloup L, Blanc F et al (2003) Nitrous oxide reverses the increase in striatal dopamine release produced by N-methyl-d-aspartate infusion in the substantia nigra pars compacta in rats. Neurosci Lett 343:147–149. doi:10.1016/S0304-3940(03)00340-9

    Article  PubMed  CAS  Google Scholar 

  10. Balon N, Risso JJ, Blanc F et al (2003) Striatal dopamine release and biphasic pattern of locomotor and motor activity under gas narcosis. Life Sci 72:2731–2740. doi:10.1016/S0024-3205(03)00183-8

    Article  PubMed  CAS  Google Scholar 

  11. Turle N, Saget A, Zouani B et al (1998) Neurochemical studies of narcosis: a comparison between the effects of nitrous oxide and hyperbaric nitrogen on the dopaminergic nigro-striatal pathway. Neurochem Res 23:997–1003. doi:10.1023/A:1021040607207

    Article  PubMed  CAS  Google Scholar 

  12. Morari M, Marti M, Sbrenna S et al (1998) Reciprocal dopamine-glutamate modulation of release in the basal ganglia. Neurochem Int 33:383–397. doi:10.1016/S0197-0186(98)00052-7

    Article  PubMed  CAS  Google Scholar 

  13. Morari M, Sbrenna S, Marti M et al (1998) Evidence for a striatal NMDA receptor modulation of nigral glutamate release. A dual probe microdialysis study in the awake freely moving rat. Eur J NeuroSci 10:1716–1722. doi:10.1046/j.1460-9568.1998.00176.x

    Article  PubMed  CAS  Google Scholar 

  14. Reith ME, Xu C, Chen NH (1997) Pharmacology and regulation of the neuronal dopamine transporter. Eur J Pharmacol 324:1–10. doi:10.1016/S0014-2999(97)00065-4

    Article  PubMed  CAS  Google Scholar 

  15. Christoffersen CL, Meltzer LT (1995) Evidence for N-methyl-d-Aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: possible preferential role for N-methyl-d-aspartate receptors. Neuroscience 67:373–381. doi:10.1016/0306-4522(95)00047-M

    Article  PubMed  CAS  Google Scholar 

  16. Overton P, Clark D (1992) Iontophoretically administered drugs acting at the N-methyl-d-aspartate receptor modulate burst firing in A9 neurons in rat. Synapse 10:131–140. doi:10.1002/syn.890100208

    Article  PubMed  CAS  Google Scholar 

  17. Gerfen CR, Wilson CJ (1996) The basal ganglia. In: Swanson LW, Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy integrated systems of the CNS, Part III, vol 12. Elsevier Science, Amsterdam, pp 371–468

    Google Scholar 

  18. Abraini JH, Kriem B, Rostain JC (1999) Administration of the glutamate uptake inhibitor L-trans-PDC in the globus pallidus and the substantia nigra, but not in the striatum, attenuates the psychostimulant effect of high helium pressure on locomotor activity in the rat. Neurosci Res 35:273–279. doi:10.1016/S0168-0102(99)00095-4

    Article  PubMed  CAS  Google Scholar 

  19. Kriem B, Rostain JC, Abraini JH (1999) Administration of either non-NMDA receptor agonists or NMDA receptor antagonists into the substantia nigra reticulata or the globus pallidus reduces the psychostimulant effect of high helium pressure on locomotor activity in rats. NeuroReport 10:3777–3783. doi:10.1097/00001756-199912160-00011

    Article  PubMed  CAS  Google Scholar 

  20. Lavoute C, Weiss M, Rostain JC (2007) The role of NMDA and GABAa receptors in the inhibiting effect of 3 MPa nitrogen on striatal dopamine level. Brain Res 1176:22–27. doi:10.1016/j.brainres.2007.07.085

    Article  CAS  Google Scholar 

  21. Abraini JH, Rostain JC (1991) Pressure-induced striatal dopamine release correlates hyperlocomotor activity in rats exposed to high pressure. J Appl Physiol 71:638–643

    PubMed  CAS  Google Scholar 

  22. Darbin O, Risso JJ, Rostain JC (1997) Pressure induces striatal serotonin and dopamine increases: a simultaneous analysis in free-moving microdialysed rats. Neurosci Lett 238:69–72. doi:10.1016/S0304-3940(97)00855-0

    Article  PubMed  CAS  Google Scholar 

  23. Darbin O, Risso JJ, Rostain JC (2001) Helium–oxygen pressure induces striatal glutamate increase: a microdialysis study in freely-moving rats. Neurosci Lett 297:37–40. doi:10.1016/S0304-3940(00)01654-2

    Article  PubMed  CAS  Google Scholar 

  24. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic press, New York

    Google Scholar 

  25. Clarkson DP, Schatte CL, Jordan JP (1972) Thermal neutral temperature of rats in helium–oxygen, argon–oxygen, and air. Am J Physiol 222:1494–1498

    PubMed  CAS  Google Scholar 

  26. Glantz SA (1997) Primer of bio-statistic. McGraw-Hill, New-York, 473 pp

    Google Scholar 

  27. Albers DS, Weiss SW, Iadarola MJ et al (1999) Immunohistochemical localization of N-methyl-d-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxalepropionate receptor subunits in the substantia nigra pars compacta of the rat. Neuroscience 89:209–220. doi:10.1016/S0306-4522(98)00328-5

    Article  PubMed  CAS  Google Scholar 

  28. Wedzony K, Czepiel K, Figal K (2001) Immunohistochemical evidence for localization of NMDAR1 receptor subunit on dopaminergic neurons of rat substantia nigra pars compacta. Pol J Pharmacol 345:523–529

    Google Scholar 

  29. Westerink BH, Santiago M, De Vries JB (1992) The release of dopamine from nerve terminals and dendrites of nigrostriatal neurons induced by excitatory amino acids in conscious rat. Naunyn-Schmiedberg’s Arch Pharmacol 345:523–529

    CAS  Google Scholar 

  30. Darbin O, Risso JJ, Rostain JC (1999) The full expression of locomotor and motor hyperactivities induced by pressure requires both striatal dopaminergic and N-methyl-d-aspartate receptor activities in the rat. Neurosci Lett 267:149–152. doi:10.1016/S0304-3940(99)00147-0

    Article  PubMed  CAS  Google Scholar 

  31. Meldrum B, Wardley-Smith B, Halsey M et al (1983) 2-Amino-phosphonoheptanoic acid protects against the high pressure neurological syndrome. Eur J Pharmacol 87:501–502. doi:10.1016/0014-2999(83)90094-8

    Article  PubMed  CAS  Google Scholar 

  32. Zinebi F, Fagni L, Hugon M (1990) Excitatory and inhibitory amino-acidergic determinants of the pressure-induced neuronal hyperexcitability in rat hippocampal slices. Undersea Biomed Res 17:487–493

    PubMed  CAS  Google Scholar 

  33. Sil’kis IG (2001) Involvement of dopamine in amplification of cortical signals activating NMDA-receptors in the striatum (hypothetic mechanism). Ross Fiziol Zh Im I M Sechenova 87:1569–1578

    PubMed  CAS  Google Scholar 

  34. Sil’kis IG (2001) A possible mechanism of dopamine-induced synergistic disinhibition of thalamic cells via “direct” and “indirect” pathways in basal ganglia. Zh Vyssh Nerv Deiat Im I P Pavlova 51:294–303

    PubMed  CAS  Google Scholar 

  35. Timmerman W, Westerink BH (1997) Brain microdialysis of GABA and glutamate: what does it signify? Synapse 27:242–261. doi :10.1002/(SICI)1098-2396(199711)27:3<242::AID-SYN9>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  36. Gundersen V, Chaudhry F, Bjaalie J et al (1998) Synaptic vesicular localization and exocytosis of l-aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus. J Neurosci 18:6059–6070

    PubMed  CAS  Google Scholar 

  37. Jantzie L, Rauw G, Todd K (2006) The effects of doxycycline administration on amino acid neurotransmitters in an animal model of neonatal hypoxia-ischemia. Neurochem Int 49:717–728. doi:10.1016/j.neuint.2006.06.010

    Article  PubMed  CAS  Google Scholar 

  38. Molchanova S, Koobi P, Oja SS et al (2004) Interstitial concentrations of amino acids in the rat striatum during global forebrain ischemia and potassium-evoked spreading depression. Neurochem Res 29:1519–1527. doi:10.1023/B:NERE.0000029564.98905.5c

    Article  PubMed  CAS  Google Scholar 

  39. Pawlik T, Souba W, Bode B (2001) Asparagine uptake in rat hepatocytes: resolution of a paradox and insights into substrate-dependent transporter regulation. Amino Acids 20:335–352. doi:10.1007/s007260170031

    Article  PubMed  CAS  Google Scholar 

  40. Hassel B, Brathe A (2000) Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J Neurosci 20:1342–1347

    PubMed  CAS  Google Scholar 

  41. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105. doi:10.1016/S0301-0082(00)00067-8

    Article  PubMed  CAS  Google Scholar 

  42. Shokati T, Zwingmann C, Leibfritz D (2005) Contribution of extracellular glutamine as an anaplerotic substrate to neuronal metabolism: a re-evaluation by multinuclear NMR spectroscopy in primary cultured neurons. Neurochem Res 30:1269–1281. doi:10.1007/s11064-005-8798-8

    Article  PubMed  CAS  Google Scholar 

  43. Zielke HR, Collins RM Jr, Baab PJ et al (1998) Compartmentation of [14C] glutamate and [14C] glutamine oxidative metabolism in the rat hippocampus as determined by microdialysis. J Neurochem 71:1315–1320

    PubMed  CAS  Google Scholar 

  44. Bradford HF, Ward HK, Thomas AJ (1978) Glutamine – a major substrate for nerve endings. J Neurochem 30:1453–1459. doi:10.1111/j.1471-4159.1978.tb10477.x

    Article  PubMed  CAS  Google Scholar 

  45. Hassel B, Sonnewald U (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids? J Neurochem 65:2227–2234

    Article  PubMed  CAS  Google Scholar 

  46. Miller KW, Paton WD, Smith EB et al (1972) Physicochemical approaches to the mode of action of general anesthetics. Anesthesiology 36:339–351. doi:10.1097/00000542-197204000-00008

    Article  PubMed  CAS  Google Scholar 

  47. Miller KW, Pang KY (1976) General anaesthetics can selectively perturb lipid bilayer membranes. Nature 263:253–255. doi:10.1038/263253a0

    Article  PubMed  CAS  Google Scholar 

  48. David HN, Balon N, Rostain JC et al (2001) Nitrogen at raised pressure interacts with the GABA(A) receptor to produce its narcotic pharmacological effect in the rat. Anesthesiology 95:921–927. doi:10.1097/00000542-200110000-00021

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant from the Délégation Générale pour l’Armement, Paris, France. PEA No. 010809

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Rostain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallée, N., Rostain, JC., Boussuges, A. et al. Comparison of Nitrogen Narcosis and Helium Pressure Effects on Striatal Amino Acids: A Microdialysis Study in Rats. Neurochem Res 34, 835–844 (2009). https://doi.org/10.1007/s11064-008-9827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9827-1

Keywords

Navigation