Skip to main content
Log in

Microarray Analysis of Gene Expression in Rat Cortical Neurons Exposed to Hyperbaric Air and Oxygen

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

To gain a global view of the genomic response of neurons to normobaric and hyperbaric hyperoxic stress, we performed a microarray analysis of gene expression after exposure to varying levels of partial oxygen pressures. Rat neurons were exposed to normobaric hyperoxia, hyperbaric (2, 4, and 6 atmosphere absolute) air or hyperbaric O2. We identified 183 genes significantly altered (increased or decreased ≥1.5-fold) in response to pressure and/or oxidative stress. Among them, 17 genes changed in response to all exposure conditions. More genes were altered in response to hyperbaric air than hyperbaric O2. The altered genes included factors associated with stress responses, transport/neurotransmission, signal transduction, and transcription factors. The results may serve as guidance for selection of biomarkers of hyperoxia and hyperbaric O2 response and provide a starting point for further studies to investigate the global molecular mechanisms underlying hyperbaric oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Crapo JD (1986) Morphologic changes in pulmonary oxygen toxicity. Annu Rev Physiol 48:721–731. doi:10.1146/annurev.ph.48.030186.003445

    Article  PubMed  CAS  Google Scholar 

  2. Harch PG, Kriedt C, Van Meter KW et al (2007) Hyperbaric oxygen therapy improves spatial learning and memory in a rat model of chronic traumatic brain injury. Brain Res 1174:120–129. doi:10.1016/j.brainres.2007.06.105

    Article  PubMed  CAS  Google Scholar 

  3. Torbati D, Church DF, Keller JM et al (1992) Free radical generation in the brain precedes hyperbaric oxygen-induced convulsions. Free Radic Biol Med 13:101–106. doi:10.1016/0891-5849(92)90070-W

    Article  PubMed  CAS  Google Scholar 

  4. Elayan IM, Axley MJ, Prasad PV et al (2000) Effect of hyperbaric oxygen treatment on nitric oxide and oxygen free radicals in rat brain. J Neurophysiol 83:2022–2029

    PubMed  CAS  Google Scholar 

  5. Oury TD, Ho YS, Piantadosi CA (1992) Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity. Proc Natl Acad Sci USA 89(20):9715–9719. doi:10.1073/pnas.89.20.9715

    Article  PubMed  CAS  Google Scholar 

  6. Freeman BA, Crapo JD (1981) Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem 256:10986–10992

    PubMed  CAS  Google Scholar 

  7. Jamieson D, Chance B, Cadenas E et al (1986) The relation of free radical production to hyperoxia. Annu Rev Physiol 48:703–719. doi:10.1146/annurev.ph.48.030186.003415

    Article  PubMed  CAS  Google Scholar 

  8. Yamaguchi KT, Stewart RJ, Wang HM et al (1992) Measurement of free radicals from smoke inhalation and oxygen exposure by spin trapping and ESR spectroscopy. Free Radic Res Commun 16:167–174. doi:10.3109/10715769209049169

    Article  PubMed  CAS  Google Scholar 

  9. Narkowicz CK, Vial JH, McCartney PW (1993) Hyperbaric oxygen therapy increases free radical levels in the blood of humans. Free Radic Res Commun 19:71–80. doi:10.3109/10715769309056501

    Article  PubMed  CAS  Google Scholar 

  10. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. doi:10.1016/j.biocel.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  11. Boucherat O, Franco-Montoya ML, Thibault C et al (2007) Gene expression profiling in lung fibroblasts reveals new players in alveolarization. Physiol Genomics 32(1):128–141. doi:10.1152/physiolgenomics.00108.2007

    Article  PubMed  CAS  Google Scholar 

  12. Chen Z, Chintagari NR, Guo Y et al (2007) Gene expression of rat alveolar type II cells during hyperoxia exposure and early recovery. Free Radic Biol Med 43:628–642. doi:10.1016/j.freeradbiomed.2007.05.024

    Article  PubMed  CAS  Google Scholar 

  13. Chambellan A, Cruickshank PJ, McKenzie P et al (2006) Gene expression profile of human airway epithelium induced by hyperoxia in vivo. Am J Respir Cell Mol Biol 35:424–435. doi:10.1165/rcmb.2005-0251OC

    Article  PubMed  CAS  Google Scholar 

  14. Matthew E, Kutcher L, Dedman J (2003) Protection of lungs from hyperoxic injury: gene expression analysis of cyclosporin A therapy. Physiol Genomics 14:129–138

    PubMed  CAS  Google Scholar 

  15. Perkowski S, Sun J, Singhal S et al (2003) Gene expression profiling of the early pulmonary response to hyperoxia in mice. Am J Respir Cell Mol Biol 28:682–696. doi:10.1165/rcmb.4692

    Article  PubMed  CAS  Google Scholar 

  16. Brewer GJ, Torricelli JR, Evege EK et al (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576. doi:10.1002/jnr.490350513

    Article  PubMed  CAS  Google Scholar 

  17. Brewer GJ (1995) Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res 42(5):674–683. doi:10.1002/jnr.490420510

    Article  PubMed  CAS  Google Scholar 

  18. Lee ML, Kuo FC, Whitmore GA et al (2000) Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc Natl Acad Sci USA 97:9834–9839. doi:10.1073/pnas.97.18.9834

    Article  PubMed  CAS  Google Scholar 

  19. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98(1):31–36. doi:10.1073/pnas.011404098

    Article  PubMed  CAS  Google Scholar 

  20. Eisen MB, Spellman PT, Brown PO (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868. doi:10.1073/pnas.95.25.14863

    Article  PubMed  CAS  Google Scholar 

  21. Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4:3. doi:10.1186/gb-2003-4-5-p3

    Article  Google Scholar 

  22. Hosack DA, Dennis G Jr, Sherman BT et al (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4:R70. doi:10.1186/gb-2003-4-10-r70

    Article  PubMed  Google Scholar 

  23. Dean JB, Mulkey DK, Garcia AJ III et al (2003) Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures. J Appl Physiol 95:883–909

    PubMed  CAS  Google Scholar 

  24. Dean JB, Mulkey DK (2000) Continuous intracellular recording from mammalian neurons exposed to hyperbaric helium, oxygen, or air. J Appl Physiol 89:807–822

    PubMed  CAS  Google Scholar 

  25. Mulkey DK, Henderson RA III, Putnam RW et al (2003) Pressure (≤4 ATA) increases membrane conductance and firing rate in the rat solitary complex. J Appl Physiol 95:922–930

    PubMed  CAS  Google Scholar 

  26. D’Agosstino DP, Colomb DG, Dean JB (2008) Effects of hyperbaric gases on membrane nanostructure and function in neurons. J Appl Physiol (in press) [Epub ahead of print]

  27. Freiberger JJ, Suliman HB, Sheng H et al (2006) A comparison of hyperbaric oxygen versus hypoxic cerebral preconditioning in neonatal rats. Brain Res 1075:213–222. doi:10.1016/j.brainres.2005.12.088

    Article  PubMed  CAS  Google Scholar 

  28. Poulsen HE, Jensen BR, Weimann A (2000) Antioxidants, DNA damage and gene expression. Free Radic Res 33(Suppl):S33–S39

    PubMed  CAS  Google Scholar 

  29. Morel Y, Barouki R (1999) Repression of gene expression by oxidative stress. Biochem J 342(Pt 3):481–496. doi:10.1042/0264-6021:3420481

    Article  PubMed  CAS  Google Scholar 

  30. Mathers J, Fraser JA, McMahon M (2004) Antioxidant and cytoprotective responses to redox stress. Biochem Soc Symp 71:157–176

    PubMed  CAS  Google Scholar 

  31. Cho HY, Jedlicka AE, Reddy SP (2002) Role of NRF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol 26:175–182

    PubMed  CAS  Google Scholar 

  32. Lee PJ, Alam J, Sylvester SL et al (1996) Regulation of heme oxygenase-1 expression in vivo and in vitro in hyperoxic lung injury. Am J Respir Cell Mol Biol 14:556–568

    PubMed  CAS  Google Scholar 

  33. Rothfuss A, Radermacher P, Speit G (2001) Involvement of heme oxygenase-1 (HO-1) in the adaptive protection of human lymphocytes after hyperbaric oxygen (HBO) treatment. Carcinogenesis 22:1979–1985. doi:10.1093/carcin/22.12.1979

    Article  PubMed  CAS  Google Scholar 

  34. Chavko M, Mahon RT, McCarron RM (2008) Mechanisms of protection against pulmonary hyperbaric O(2) toxicity by intermittent air breaks. Eur J Appl Physiol 102:525–532. doi:10.1007/s00421-007-0611-8

    Article  PubMed  CAS  Google Scholar 

  35. Lee PJ, Alam J, Wiegand GW et al (1996) Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc Natl Acad Sci USA 93:10393–10398. doi:10.1073/pnas.93.19.10393

    Article  PubMed  CAS  Google Scholar 

  36. Suttner DM, Sridhar K, Lee CS et al (1999) Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells. Am J Physiol 276(3 Pt 1):L443–L451

    PubMed  CAS  Google Scholar 

  37. Otterbein LE, Kolls JK, Mantell LL (1999) Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. J Clin Invest 103:1047–1054. doi:10.1172/JCI5342

    Article  PubMed  CAS  Google Scholar 

  38. Rothfuss A, Speit G (2002) Overexpression of heme oxygenase-1 (HO-1) in V79 cells results in increased resistance to hyperbaric oxygen (HBO)-induced DNA damage. Environ Mol Mutagen 40:258–265. doi:10.1002/em.10120

    Article  PubMed  CAS  Google Scholar 

  39. Hirata T, Cui YJ, Funakoshi T et al (2007) The temporal profile of genomic responses and protein synthesis in ischemic tolerance of the rat brain induced by repeated hyperbaric oxygen. Brain Res 1130(1):214–222. doi:10.1016/j.brainres.2006.10.077

    Article  PubMed  CAS  Google Scholar 

  40. Ramji DP, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365(Pt 3):561–575

    PubMed  CAS  Google Scholar 

  41. Gupta SK, Lysko PG, Pillarisetti K et al (1998) Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J Biol Chem 273:4282–4287. doi:10.1074/jbc.273.7.4282

    Article  PubMed  CAS  Google Scholar 

  42. Bajetto A, Barbero S, Bonavia R et al (2001) Stromal cell-derived factor-1alpha induces astrocyte proliferation through the activation of extracellular signal-regulated kinases 1/2 pathway. J Neurochem 77:1226–1236. doi:10.1046/j.1471-4159.2001.00350.x

    Article  PubMed  CAS  Google Scholar 

  43. Hesselgesser J, Horuk R (1999) Chemokine and chemokine receptor expression in the central nervous system. J Neurovirol 5:13–26. doi:10.3109/13550289909029741

    Article  PubMed  CAS  Google Scholar 

  44. Zou YR, Kottmann AH, Kuroda M (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599. doi:10.1038/31269

    Article  PubMed  CAS  Google Scholar 

  45. Felszeghy K, Banisadr G, Rostène W et al (2004) Dexamethasone downregulates chemokine receptor CXCR4 and exerts neuroprotection against hypoxia/ischemia-induced brain injury in neonatal rats. Neuroimmunomodulation 11:404–413. doi:10.1159/000080151

    Article  PubMed  CAS  Google Scholar 

  46. Matsumoto M, Miyake Y, Nagita M et al (2001) A serine/threonine kinase which causes apoptosis-like cell death interacts with a calcineurin B-like protein capable of binding Na(+)/H(+) exchanger. J Biochem 130:217–225

    PubMed  CAS  Google Scholar 

  47. Mao J, Qiao X, Luo H et al (2006) Transgenic drak2 overexpression in mice leads to increased T cell apoptosis and compromised memory T cell development. J Biol Chem 281:12587–12595. doi:10.1074/jbc.M600497200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. John Boal for technical support and Ms. Diana Temple for editorial assistance. This work was supported by Office of Naval Research Work Unit #0601153N.4118.A0303. The opinions expressed in this presentation are those of the authors and do not reflect the official policy of the Department of Navy, Department of Defense, of the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. McCarron.

Additional information

Ye Chen and N. Suzan Nadi have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Nadi, N.S., Chavko, M. et al. Microarray Analysis of Gene Expression in Rat Cortical Neurons Exposed to Hyperbaric Air and Oxygen. Neurochem Res 34, 1047–1056 (2009). https://doi.org/10.1007/s11064-008-9873-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9873-8

Keywords

Navigation