Skip to main content

Advertisement

Log in

Glutathionylation of the Pro-apoptotic Protein p53 in Alzheimer’s Disease Brain: Implications for AD Pathogenesis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 19 March 2009

Abstract

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder. The exact mechanism for the AD pathogenesis is not clearly understood. However, a number of hypotheses have been proposed to explain the pathogenesis of AD. One the hypotheses is the oxidative stress hypothesis that is supported by a number of studies which reported an increase in the levels of reactive oxygen/reactive nitrogen species and their products with a concomitant decrease in the levels of antioxidant enzymes in AD brain. In the present study, we measured in AD brain the expression levels of different forms (monomer, dimer and tetramer) of the pro-apoptotic protein, p53, and observed greater levels of p53 monomer and dimer in AD brain compared to control. In addition, we also showed the selective glutathionylation of monomeric and dimeric form of p53 in AD brain. We propose that glutathionylation of p53 may prevent the formation of tetramer, an aggregate form required for effective action of p53, and may be involved in oxidative stress conditions and neurodegeneration observed in this dementing disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Katzman R, Saitoh T (1991) Advances in Alzheimer’s disease. FASEB J 5:278–286

    PubMed  CAS  Google Scholar 

  2. Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt–Jakob disease. Brain Res 541:163–166

    Article  PubMed  CAS  Google Scholar 

  3. Lee MK, Borchelt DR, Kim G, Thinakaran G, Slunt HH, Ratovitski T, Martin LJ, Kittur A, Gandy S, Levey AI, Jenkins N, Copeland N, Price DL, Sisodia SS (1997) Hyper accumulation of FAD-linked presenilin 1 variants in vivo. Nat Med 3:756–760

    Article  PubMed  CAS  Google Scholar 

  4. Butterfield DA (2002) Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 36:1307–1313

    Article  PubMed  CAS  Google Scholar 

  5. Butterfield DA, Reed T, Newman SF, Sultana R (2007) Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 43:658–677

    Article  PubMed  CAS  Google Scholar 

  6. Huebbe P, Schaffer S, Jofre-Monseny L, Boesch-Saadatmandi C, Minihane AM, Muller WE, Eckert GP, Rimbach G (2007) Apolipoprotein E genotype and alpha-tocopherol modulate amyloid precursor protein metabolism and cell cycle regulation. Mol Nutr Food Res 51:1510–1517

    Article  PubMed  CAS  Google Scholar 

  7. Yatin SM, Aksenov M, Butterfield DA (1999) The antioxidant vitamin E modulates amyloid beta-peptide-induced creatine kinase activity inhibition and increased protein oxidation: implications for the free radical hypothesis of Alzheimer’s disease. Neurochem Res 24:427–435

    Article  PubMed  CAS  Google Scholar 

  8. Boyd-Kimball D, Mohmmad Abdul H, Reed T, Sultana R, Butterfield DA (2004) Role of phenylalanine 20 in Alzheimer’s amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity. Chem Res Toxicol 17:1743–1749

    Article  PubMed  CAS  Google Scholar 

  9. Cooper J (1997) In: Barchi R, Kunk L (eds) Glutathione in the brain: disorders of glutathione metabolism. Butterworth–Heinemann, Boston

    Google Scholar 

  10. Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267:4928–4944

    Article  PubMed  CAS  Google Scholar 

  11. Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) S-glutathionylation in protein redox regulation. Free Radic Biol Med 43:883–898

    Article  PubMed  CAS  Google Scholar 

  12. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    Article  PubMed  CAS  Google Scholar 

  13. Meister A (1995) Mitochondrial changes associated with glutathione deficiency. Biochim Biophys Acta 1271:35–42

    PubMed  Google Scholar 

  14. Darley-Usmar V, Halliwell B (1996) Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res 13:649–662

    Article  PubMed  CAS  Google Scholar 

  15. Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921

    Article  PubMed  CAS  Google Scholar 

  16. Hansen JM, Go YM, Jones DP (2006) Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 46:215–234

    Article  PubMed  CAS  Google Scholar 

  17. Watson WH, Chen Y, Jones DP (2003) Redox state of glutathione and thioredoxin in differentiation and apoptosis. Biofactors 17:307–314

    Article  PubMed  CAS  Google Scholar 

  18. Owen AD, Schapira AH, Jenner P, Marsden CD (1997) Indices of oxidative stress in Parkinson’s disease, Alzheimer’s disease and dementia with Lewy bodies. J Neural Transm Suppl 51:167–173

    PubMed  CAS  Google Scholar 

  19. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  PubMed  CAS  Google Scholar 

  20. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  21. Chrestensen CA, Starke DW, Mieyal JJ (2000) Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem 275:26556–26565

    Article  PubMed  CAS  Google Scholar 

  22. Cotgreave IA, Gerdes R, Schuppe-Koistinen I, Lind C (2002) S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase: role of thiol oxidation and catalysis by glutaredoxin. Methods Enzymol 348:175–182

    Article  PubMed  CAS  Google Scholar 

  23. Shenton D, Perrone G, Quinn KA, Dawes IW, Grant CM (2002) Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae. J Biol Chem 277:16853–16859

    Article  PubMed  CAS  Google Scholar 

  24. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  PubMed  CAS  Google Scholar 

  25. Jacob C, Knight I, Winyard PG (2006) Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways. Biol Chem 387:1385–1397

    Article  PubMed  CAS  Google Scholar 

  26. Sies H, Akerboom TP (1984) Glutathione disulfide (GSSG) efflux from cells and tissues. Methods Enzymol 105:445–451

    Article  PubMed  CAS  Google Scholar 

  27. Chai YC, Hoppe G, Sears J (2003) Reversal of protein S-glutathiolation by glutaredoxin in the retinal pigment epithelium. Exp Eye Res 76:155–159

    Article  PubMed  CAS  Google Scholar 

  28. Reynaert NL, Ckless K, Guala AS, Wouters EF, van der Vliet A, Janssen-Heininger YM (2006) In situ detection of S-glutathionylated proteins following glutaredoxin-1 catalyzed cysteine derivatization. Biochim Biophys Acta 1760:380–387

    PubMed  CAS  Google Scholar 

  29. Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072

    Article  PubMed  CAS  Google Scholar 

  30. Cenini G, Sultana R, Memo M. and Butterfield DA (2007) Elevated levels of Pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. J Cell Mol Med. doi:10.1111/j.1582-4934.2007.00163.x

  31. Cenini G, Sultana R, Memo M. and Butterfield DA (2008) Effect of oxidative and nitrosative stress in brain on p53 proapoptotic protein in amnestic mild cognitive impairment and Alzheimer disease. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2008.03.015

  32. Almog N, Rotter V (1997) Involvement of p53 in cell differentiation and development. Biochim Biophys Acta 1333:F1–F27

    PubMed  CAS  Google Scholar 

  33. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS–ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  34. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA (2006) Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27:1564–1576

    Article  PubMed  CAS  Google Scholar 

  35. Butterfield DA, Sultana R (2007) Redox proteomics identification of oxidatively modified brain proteins in Alzheimer’s disease and mild cognitive impairment: insights into the progression of this dementing disorder. J Alzheimers Dis 12:61–72

    PubMed  CAS  Google Scholar 

  36. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33:562–571

    Article  PubMed  CAS  Google Scholar 

  37. Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 82:1524–1532

    Article  PubMed  CAS  Google Scholar 

  38. Butterfield DA, Boyd-Kimball D (2004) Proteomics analysis in Alzheimer’s disease: new insights into mechanisms of neurodegeneration. Int Rev Neurobiol 61:159–188

    Article  PubMed  Google Scholar 

  39. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Markesbery WR, Zhou XZ, Lu KP, Butterfield DA (2006) Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: a redox proteomics analysis. Neurobiol Aging 27:918–925

    Article  PubMed  CAS  Google Scholar 

  40. Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65:2146–2156

    Article  PubMed  CAS  Google Scholar 

  41. Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, Butterfield DA (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of A beta 1-42. J Neurochem 78:413–416

    Article  PubMed  CAS  Google Scholar 

  42. Butterfield DA (2004) Proteomics: a new approach to investigate oxidative stress in Alzheimer’s disease brain. Brain Res 1000:1–7

    Article  PubMed  CAS  Google Scholar 

  43. Claiborne A, Mallett TC, Yeh JI, Luba J, Parsonage D (2001) Structural, redox, and mechanistic parameters for cysteine–sulfenic acid function in catalysis and regulation. Adv Protein Chem 58:215–276

    Article  PubMed  CAS  Google Scholar 

  44. Claiborne A, Yeh JI, Mallett TC, Luba J, Crane EJ 3rd, Charrier V, Parsonage D (1999) Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38:15407–15416

    Article  PubMed  CAS  Google Scholar 

  45. Rainwater R, Parks D, Anderson ME, Tegtmeyer P, Mann K (1995) Role of cysteine residues in regulation of p53 function. Mol Cell Biol 15:3892–3903

    PubMed  CAS  Google Scholar 

  46. Sun XZ, Vinci C, Makmura L, Han S, Tran D, Nguyen J, Hamann M, Grazziani S, Sheppard S, Gutova M, Zhou F, Thomas J, Momand J (2003) Formation of disulfide bond in p53 correlates with inhibition of DNA binding and tetramerization. Antioxid Redox Signal 5:655–665

    Article  PubMed  CAS  Google Scholar 

  47. Velu CS, Niture SK, Doneanu CE, Pattabiraman N, Srivenugopal KS (2007) Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 46:7765–7780

    Article  PubMed  CAS  Google Scholar 

  48. McLure KG, Lee PW (1998) How p53 binds DNA as a tetramer. EMBO J 17:3342–3350

    Article  PubMed  CAS  Google Scholar 

  49. Delphin C, Cahen P, Lawrence JJ, Baudier J (1994) Characterization of baculovirus recombinant wild-type p53. Dimerization of p53 is required for high-affinity DNA binding and cysteine oxidation inhibits p53 DNA binding. Eur J Biochem 223:683–692

    Article  PubMed  CAS  Google Scholar 

  50. Dandrea T, Bajak E, Warngard L, Cotgreave IA (2002) Protein S-glutathionylation correlates to selective stress gene expression and cytoprotection. Arch Biochem Biophys 406:241–252

    Article  PubMed  CAS  Google Scholar 

  51. Winyard PG, Moody CJ, Jacob C (2005) Oxidative activation of antioxidant defence. Trends Biochem Sci 30:453–461

    Article  PubMed  CAS  Google Scholar 

  52. Verhaegh GW, Richard MJ, Hainaut P (1997) Regulation of p53 by metal ions and by antioxidants: dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper. Mol Cell Biol 17:5699–5706

    PubMed  CAS  Google Scholar 

  53. Cobbs CS, Whisenhunt TR, Wesemann DR, Harkins LE, Van Meir EG, Samanta M (2003) Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res 63:8670–8673

    PubMed  CAS  Google Scholar 

  54. Hammond EM, Giaccia AJ (2005) The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Commun 331:718–725

    Article  PubMed  CAS  Google Scholar 

  55. Wu HH, Thomas JA, Momand J (2000) p53 protein oxidation in cultured cells in response to pyrrolidine dithiocarbamate: a novel method for relating the amount of p53 oxidation in vivo to the regulation of p53-responsive genes. Biochem J 351:87–93

    Article  PubMed  CAS  Google Scholar 

  56. Newman SF, Sultana R, Perluigi M, Coccia R, Cai J, Pierce WM, Klein JB, Turner DM, Butterfield DA (2007) An increase in S-glutathionylated proteins in the Alzheimer’s disease inferior parietal lobule, a proteomics approach. J Neurosci Res 85:1506–1514

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by NIH grants to D.A.B. [AG-05119;AG-10836; AG-029839]. We thank the faculty of the UK ADC Neuropathology Core for providing the AD and control brain specimens used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Allan Butterfield.

Additional information

Special issue article in Honour of Dr. Akitane Mori.

Fabio Di Domenico and Giovanna Cenini contributed equally.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11064-009-9955-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domenico, F.D., Cenini, G., Sultana, R. et al. Glutathionylation of the Pro-apoptotic Protein p53 in Alzheimer’s Disease Brain: Implications for AD Pathogenesis. Neurochem Res 34, 727–733 (2009). https://doi.org/10.1007/s11064-009-9924-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9924-9

Keywords

Navigation