Skip to main content
Log in

S100B Secretion in Acute Brain Slices: Modulation by Extracellular Levels of Ca2+ and K+

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hippocampal slices have been widely used to investigate electrophysiological and metabolic neuronal parameters, as well as parameters of astroglial activity including protein phosphorylation and glutamate uptake. S100B is an astroglial-derived protein, which extracellularly plays a neurotrophic activity during development and excitotoxic insult. Herein, we characterized S100B secretion in acute hippocampal slices exposed to different concentrations of K+ and Ca2+ in the extracellular medium. Absence of Ca2+ and/or low K+ (0.2 mM KCl) caused an increase in S100B secretion, possibly by mobilization of internal stores of Ca2+. In contrast, high K+ (30 mM KCl) or calcium channel blockers caused a decrease in S100B secretion. This study suggests that exposure of acute hippocampal slices to low- and high-K+ could be used as an assay to evaluate astrocyte activity by S100B secretion: positively regulated by low K+ (possibly involving mobilization of internal stores of Ca2+) and negatively regulated by high-K+ (likely secondary to influx of K+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li CL, Mc IH (1957) Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. J Physiol 139:178–190

    PubMed  CAS  Google Scholar 

  2. Sajikumar S, Navakkode S, Frey JU (2005) Protein synthesis-dependent long-term functional plasticity: methods and techniques. Curr Opin Neurobiol 15:607–613. doi:10.1016/j.conb.2005.08.009

    Article  PubMed  CAS  Google Scholar 

  3. Leal RB, Goncalves CA, Rodnight R (1997) Calcium-dependent phosphorylation of glial fibrillary acidic protein (GFAP) in the rat hippocampus: a comparison of the kinase/phosphatase balance in immature and mature slices using tryptic phosphopeptide mapping. Brain Res Dev Brain Res 104:1–10. doi:10.1016/S0165-3806(97)00113-2

    Article  PubMed  CAS  Google Scholar 

  4. Thomazi AP, Godinho GF, Rodrigues JM, Schwalm FD, Frizzo ME, Moriguchi E, Souza DO, Wofchuk ST (2004) Ontogenetic profile of glutamate uptake in brain structures slices from rats: sensitivity to guanosine. Mech Ageing Dev 125:475–481. doi:10.1016/j.mad.2004.04.005

    Article  PubMed  CAS  Google Scholar 

  5. Shashoua VE, Hesse GW, Moore BW (1984) Proteins of the brain extracellular fluid: evidence for release of S-100 protein. J Neurochem 42:1536–1541. doi:10.1111/j.1471-4159.1984.tb12739.x

    Article  PubMed  CAS  Google Scholar 

  6. Buyukuysal RL (2005) Protein S100B release from rat brain slices during and after ischemia: comparison with lactate dehydrogenase leakage. Neurochem Int 47:580–588. doi:10.1016/j.neuint.2005.06.009

    Article  PubMed  Google Scholar 

  7. Aitken PG, Breese GR, Dudek FF, Edwards F, Espanol MT, Larkman PM, Lipton P, Newman GC, Nowak TS Jr, Panizzon KL et al (1995) Preparative methods for brain slices: a discussion. J Neurosci Methods 59:139–149. doi:10.1016/0165-0270(94)00204-T

    Article  PubMed  CAS  Google Scholar 

  8. Nagy JI, Li WE (2000) A brain slice model for in vitro analyses of astrocytic gap junction and connexin43 regulation: actions of ischemia, glutamate and elevated potassium. Eur J NeuroSci 12:4567–4572. doi:10.1046/j.1460-9568.2000.01331.x

    Article  PubMed  CAS  Google Scholar 

  9. Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33:637–668. doi:10.1016/S1357-2725(01)00046-2

    Article  PubMed  CAS  Google Scholar 

  10. Van Eldik LJ, Wainwright MS (2003) The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci 21:97–108

    PubMed  Google Scholar 

  11. Ahlemeyer B, Beier H, Semkova I, Schaper C, Krieglstein J (2000) S-100beta protects cultured neurons against glutamate- and staurosporine-induced damage and is involved in the antiapoptotic action of the 5 HT(1A)-receptor agonist, Bay x 3702. Brain Res 858:121–128. doi:10.1016/S0006-8993(99)02438-5

    Article  PubMed  CAS  Google Scholar 

  12. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H (2000) Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275:40096–40105. doi:10.1074/jbc.M006993200

    Article  PubMed  CAS  Google Scholar 

  13. Businaro R, Leone S, Fabrizi C, Sorci G, Donato R, Lauro GM, Fumagalli L (2006) S100B protects LAN-5 neuroblastoma cells against Abeta amyloid-induced neurotoxicity via RAGE engagement at low doses but increases Abeta amyloid neurotoxicity at high doses. J Neurosci Res 83:897–906. doi:10.1002/jnr.20785

    Article  PubMed  CAS  Google Scholar 

  14. Nishiyama H, Knopfel T, Endo S, Itohara S (2002) Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci USA 99:4037–4042. doi:10.1073/pnas.052020999

    Article  PubMed  CAS  Google Scholar 

  15. Moore BW (1965) A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 19:739–744. doi:10.1016/0006-291X(65)90320-7

    Article  PubMed  CAS  Google Scholar 

  16. Van Eldik LJ, Zimmer DB (1987) Secretion of S-100 from rat C6 glioma cells. Brain Res 436:367–370. doi:10.1016/0006-8993(87)91681-7

    Article  PubMed  Google Scholar 

  17. Fontella FU, Cimarosti H, Crema LM, Thomazi AP, Leite MC, Salbego C, Goncalves CA, Wofchuk S, Dalmaz C, Netto CA (2005) Acute and repeated restraint stress influences cellular damage in rat hippocampal slices exposed to oxygen and glucose deprivation. Brain Res Bull 65:443–450. doi:10.1016/j.brainresbull.2005.02.026

    Article  PubMed  CAS  Google Scholar 

  18. Tramontina AC, Tramontina F, Bobermin LD, Zanotto C, Souza DF, Leite MC, Nardin P, Gottfried C, Goncalves CA (2008) Secretion of S100B, an astrocyte-derived neurotrophic protein, is stimulated by fluoxetine via a mechanism independent of serotonin. Prog Neuropsychopharmacol Biol Psychiatry 32:1580–1583. doi:10.1016/j.pnpbp.2008.06.001

    Article  PubMed  CAS  Google Scholar 

  19. de Souza DF, Leite MC, Quincozes-Santos A, Nardin P, Tortorelli LS, Rigo MM, Gottfried C, Leal RB, Goncalves CA (2009) S100B secretion is stimulated by IL-1beta in glial cultures and hippocampal slices of rats: likely involvement of MAPK pathway. J Neuroimmunol 206:52–57. doi:10.1016/j.jneuroim.2008.10.012

    Article  PubMed  Google Scholar 

  20. Dallwig R, Deitmer JW (2002) Cell-type specific calcium responses in acute rat hippocampal slices. J Neurosci Methods 116:77–87. doi:10.1016/S0165-0270(02)00030-4

    Article  PubMed  CAS  Google Scholar 

  21. Verkhratsky A, Solovyeva N, Toescu EN (2002) Calcium excitability of glial cells. In: Volterra A, Magistretti PJ, Haydon PG (eds) The tripartite synapse. Glia in synaptic transmission, 1st edn. Oxford University Press, NewYork

    Google Scholar 

  22. Leite MC, Galland F, Brolese G, Guerra MC, Bortolotto JW, Freitas R, Almeida LM, Gottfried C, Goncalves CA (2008) A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods 169:93–99

    PubMed  CAS  Google Scholar 

  23. Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210. doi:10.1016/0022-1759(89)90397-9

    Article  PubMed  CAS  Google Scholar 

  24. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    PubMed  CAS  Google Scholar 

  25. Moretto MB, Funchal C, Santos AQ, Gottfried C, Boff B, Zeni G, Pureur RP, Souza DO, Wofchuk S, Rocha JB (2005) Ebselen protects glutamate uptake inhibition caused by methyl mercury but does not by Hg2+. Toxicology 214:57–66. doi:10.1016/j.tox.2005.05.022

    Article  PubMed  CAS  Google Scholar 

  26. Tramontina F, Leite MC, Cereser K, de Souza DF, Tramontina AC, Nardin P, Andreazza AC, Gottfried C, Kapczinski F, Goncalves CA (2007) Immunoassay for glial fibrillary acidic protein: antigen recognition is affected by its phosphorylation state. J Neurosci Methods 162:282–286. doi:10.1016/j.jneumeth.2007.01.001

    Article  PubMed  CAS  Google Scholar 

  27. Williams LR, Pregenzer JF, Oostveen JA (1992) Induction of cobalt accumulation by excitatory amino acids within neurons of the hippocampal slice. Brain Res 581:181–189. doi:10.1016/0006-8993(92)90707-G

    Article  PubMed  CAS  Google Scholar 

  28. Gottfried C, Valentim L, Salbego C, Karl J, Wofchuk ST, Rodnight R (1999) Regulation of protein phosphorylation in astrocyte cultures by external calcium ions: specific effects on the phosphorylation of glial fibrillary acidic protein (GFAP), vimentin and heat shock protein 27 (HSP27). Brain Res 833:142–149. doi:10.1016/S0006-8993(99)01503-6

    Article  PubMed  CAS  Google Scholar 

  29. Anderson WW, Lewis DV, Swartzwelder HS, Wilson WA (1986) Magnesium-free medium activates seizure-like events in the rat hippocampal slice. Brain Res 398:215–219. doi:10.1016/0006-8993(86)91274-6

    Article  PubMed  CAS  Google Scholar 

  30. Tancredi V, Hwa GG, Zona C, Brancati A, Avoli M (1990) Low magnesium epileptogenesis in the rat hippocampal slice: electrophysiological and pharmacological features. Brain Res 511:280–290. doi:10.1016/0006-8993(90)90173-9

    Article  PubMed  CAS  Google Scholar 

  31. Tramontina F, Leite MC, Goncalves D, Tramontina AC, Souza DF, Frizzo JK, Nardin P, Gottfried C, Wofchuk ST, Goncalves CA (2006) High glutamate decreases S100B secretion by a mechanism dependent on the glutamate transporter. Neurochem Res 31:815–820. doi:10.1007/s11064-006-9085-z

    Article  PubMed  CAS  Google Scholar 

  32. Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683. doi:10.1523/JNEUROSCI.4689-05.2006

    Article  PubMed  CAS  Google Scholar 

  33. Dallwig R, Vitten H, Deitmer JW (2000) A novel barium-sensitive calcium influx into rat astrocytes at low external potassium. Cell Calcium 28:247–259. doi:10.1054/ceca.2000.0153

    Article  PubMed  CAS  Google Scholar 

  34. Carmignoto G, Pasti L, Pozzan T (1998) On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci 18:4637–4645

    PubMed  CAS  Google Scholar 

  35. Goncalves D, Karl J, Leite M, Rotta L, Salbego C, Rocha E, Wofchuk S, Goncalves CA (2002) High glutamate decreases S100B secretion stimulated by serum deprivation in astrocytes. NeuroReport 13:1533–1535. doi:10.1097/00001756-200208270-00009

    Article  PubMed  CAS  Google Scholar 

  36. Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367

    PubMed  CAS  Google Scholar 

  37. Whittingham TS, Lust WD, Christakis DA, Passonneau JV (1984) Metabolic stability of hippocampal slice preparations during prolonged incubation. J Neurochem 43:689–696. doi:10.1111/j.1471-4159.1984.tb12788.x

    Article  PubMed  CAS  Google Scholar 

  38. Robertson NJ, Bhakoo K, Puri BK, Edwards AD, Cox IJ (2005) Hypothermia and amiloride preserve energetics in a neonatal brain slice model. Pediatr Res 58:288–296. doi:10.1203/01.PDR.0000170899.90479.1E

    Article  PubMed  CAS  Google Scholar 

  39. Feoli AM, Siqueira I, Almeida LM, Tramontina AC, Battu C, Wofchuk ST, Gottfried C, Perry ML, Goncalves CA (2006) Brain glutathione content and glutamate uptake are reduced in rats exposed to pre- and postnatal protein malnutrition. J Nutr 136:2357–2361

    PubMed  CAS  Google Scholar 

  40. Pinto SS, Gottfried C, Mendez A, Goncalves D, Karl J, Goncalves CA, Wofchuk S, Rodnight R (2000) Immunocontent and secretion of S100B in astrocyte cultures from different brain regions in relation to morphology. FEBS Lett 486:203–207. doi:10.1016/S0014-5793(00)02301-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), FINEP/Rede IBN 01.06.0842-00 and INCT-National Institute of Science and Technology for Excitotoxicity and Neuroprotection. We would like to thank Ms. Liz Marina Bueno dos Passos for technical support with NSE measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos-Alberto Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nardin, P., Tortorelli, L., Quincozes-Santos, A. et al. S100B Secretion in Acute Brain Slices: Modulation by Extracellular Levels of Ca2+ and K+ . Neurochem Res 34, 1603–1611 (2009). https://doi.org/10.1007/s11064-009-9949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9949-0

Keywords

Navigation