Skip to main content
Log in

Neuroprotection of Pramipexole in UPS Impairment Induced Animal Model of Parkinson’s Disease

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Pramipexole (PPX), a dopamine (DA) receptor D3 preferring agonist, has been used as monotherapy or adjunct therapy to treat Parkinson’s disease (PD) for many years. Several in vitro and in vivo studies in neurotoxin-induced DA neuron injury models have reported that PPX may possess neuroprotective properties. The present study is to evaluate the neuroprotection of PPX in a sustained DA neuron degeneration model of PD induced by ubiquitin–proteasome system (UPS) impairment. Adult C57BL/6 mice were treated with PPX (low dose 0.1 mg/kg or high dose 0.5 mg/kg, i.p, twice a day) started 7 days before, and continued after microinjection of proteasome inhibitor lactacystin in the medial forebrain bundle for a total 4 weeks. Animal behavior observation, and pathological and biochemical assays were conducted to determine the neuroprotective effects of PPX. We report here that PPX treatment significantly improves rotarod performance, attenuates DA neuron loss and striatal DA reduction, and alleviates proteasomal inhibition and microglial activation in the substantia nigra of lactacystin-lesioned mice. PPX can increase the levels of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and induce an activation of autophagy. Furthermore, pretreatment with D3 receptor antagonist U99194 can significantly block the PPX-mediated neuroprotection. These results suggest that multiple molecular pathways may be attributed to the neuroprotective effects of PPX in the UPS impairment model of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ALP:

Autophagy lysosome pathway

BDNF:

Brain-derived neurotrophic factor

DA:

Dopamine

DAB:

3, 3-diaminobenzidine tetrachloride

DOPAC:

4-dihydroxy-phenylacetic acid

DPBS:

Dulbecco’s phosphate buffered saline

GDNF:

Glial cell line-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

HD:

Huntington’s disease

HVA:

Homovanillic acid

LC3–II:

Light chain3–II

MFB:

Medial forebrain bundle

mTOR:

Mammalian target of rapamycin

PBS:

Phosphate-buffered saline

PD:

Parkinson’s disease

ppx:

Pramipexole

sn:

Substantia nigra

TH:

Tyrosine hydroxylase

UPS:

Ubiquitin proteasome system

References

  1. Snyder H, Wolozin B (2004) Pathological proteins in Parkinson’s disease: focus on the proteasome. J Mol Neurosci 24:425–442

    Article  CAS  PubMed  Google Scholar 

  2. Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Ann Rev Neurosci 28:57–87

    Article  CAS  PubMed  Google Scholar 

  3. Le W, Chen S, Jankovic J (2009) Etiopathogenesis of Parkinson disease: a new beginning? Neuroscientist 15:28–35

    Google Scholar 

  4. Barone P (2003) Clinical strategies to prevent and delay motor complications. Neurology 61:S12–S16

    PubMed  Google Scholar 

  5. Jankovic J (2006) An update on the treatment of Parkinson’s disease. Mt Sinai J Med 73:682–689

    PubMed  Google Scholar 

  6. Clarke CE, Guttman M (2002) Dopamine agonist monotherapy in Parkinson’s disease. Lancet 360:1767–1769

    Article  CAS  PubMed  Google Scholar 

  7. Shannon KM, Bennett JP Jr, Friedman JH (1997) Efficacy of pramipexole a novel dopamine agonist, in mild to moderate Parkinson’s disease. The pramipexole study group. Neurology 49:724–728

    CAS  PubMed  Google Scholar 

  8. Albrecht S, Buerger E (2009) Potential neuroprotection mechanisms in PD: focus on dopamineagonist pramipexole. Curr Med Res Opin 25:2977–2987

    Article  CAS  PubMed  Google Scholar 

  9. Le WD, Jankovic J (2001) Are dopamine receptor agonists neuroprotective in Parkinson’s disease? Drugs Aging 18:389–396

    Article  CAS  PubMed  Google Scholar 

  10. Zou LL, Xu J, Jankovic J, He Y, Appel SH, Le W (2000) Pramipexole inhibits lipid peroxidation and reduces injury in the substantia nigra induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in C57BL/6 mice. Neurosci Lett 281:167–170

    Article  CAS  PubMed  Google Scholar 

  11. Cassarino DS, Fall CP, Smith TS, Bennett JP Jr (1998) Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion. J Neurochem 71:295–301

    Article  CAS  PubMed  Google Scholar 

  12. Joyce JN, Millan MJ (2007) Dopamine D3 receptor agonists for protection and repair in Parkinson’s disease. Curr Opin Pharmacol 7:100–105

    Article  CAS  PubMed  Google Scholar 

  13. Olanow CW, Kordower JH (2009) Modeling Parkinson’s disease. Ann Neurol 66:432–435

    Article  CAS  PubMed  Google Scholar 

  14. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  15. Höglinger GU, Oertel WH, Hirsch EC (2006) The rotenone model of parkinsonism–the five years inspection. J Neural Transm Suppl 70:269–272

    Article  PubMed  Google Scholar 

  16. Sun F, Kanthasamy A, Anantharam V, Kanthasamy AG (2007) Environmental neurotoxic chemicals-induced ubiquitin proteasome system dysfunction in the pathogenesis and progression of Parkinson’s disease. Pharmacol Ther 114:327–344

    Article  CAS  PubMed  Google Scholar 

  17. Cook C, Petrucelli L (2009) A critical evaluation of the ubiquitin-proteasome system in Parkinson’s disease. Biochem Biophys Acta 1792:664–675

    CAS  PubMed  Google Scholar 

  18. Bennett EJ, Bence NF, Jayakumar R, Kopito RR (2005) Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell 17:351–365

    Article  CAS  PubMed  Google Scholar 

  19. McNaught KS, Olanow CW (2006) Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiol Aging 27:530–545

    Article  CAS  PubMed  Google Scholar 

  20. Bedford L, Hay D, Devoy A, Paine S, Powe DG, Seth R, Gray T, Topham I, Fone K, Rezvani N, Mee M, Soane T, Layfield R, Sheppard PW, Ebendal T, Usoskin D, Lowe J, Mayer RJ (2008) Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci 28:8189–8198

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Xie WJ, Qu S, Pan T, Wang X, Le W (2005) Neuroprotection by iron chelator against proteasome inhibitor-induced nigral degeneration. Biochem Biophys Res Commun 333:544–549

    Article  CAS  PubMed  Google Scholar 

  22. Zhu W, Xie WJ, Pan TH, Jankovic J, Li J, Youdim MB, Le W (2007) Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J 21:3835–3844

    Article  CAS  PubMed  Google Scholar 

  23. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  PubMed  Google Scholar 

  24. Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6:352–361

    Article  CAS  PubMed  Google Scholar 

  25. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  26. Glaser JR, Glaser EM (2000) Stereology, morphometry, and mapping: the whole is greater than the sum of its parts. J Chem Neuroanat 20:115–126

    Article  CAS  PubMed  Google Scholar 

  27. Du F, Li R, Huang Y, Li X, Le W (2005) Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons. Eur J Neurosci 22:2422–2430

    Article  PubMed  Google Scholar 

  28. Zemke D, Azhar S, Majid A (2007) The mTOR pathway as a potential target for the development of therapies against neurological disease. Drug News Perspect 20:495–499

    Article  CAS  PubMed  Google Scholar 

  29. Pan TH, Kondo S, Zhu W, Xie W, Jankovic J, Le W (2008) Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol Dis 32:16–25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Research Grant from Boehringer Ingelheim Pharma GmbH & Co. KG Research Grant, and Diana Helis Henry Medical Research Foundation We also thank the High Resolution Electron Microscopy Facility, University of Texas MD Anderson for their help in electronic microscope examination.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingang Li or Weidong Le.

Additional information

Chao Li and Yuan Guo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Guo, Y., Xie, W. et al. Neuroprotection of Pramipexole in UPS Impairment Induced Animal Model of Parkinson’s Disease. Neurochem Res 35, 1546–1556 (2010). https://doi.org/10.1007/s11064-010-0214-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0214-3

Keywords

Navigation