Skip to main content
Log in

Protection by DHA of Early Hippocampal Changes in Diabetes: Possible Role of CREB and NF-κB

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The mechanisms underlying diabetic encephalopathy, are only partially understood. In this study, we try to address the mechanisms of diabetes induced damage and whether docosahexaenoic acid (DHA) could attenuate the degenerative changes in diabetic hippocampus in a rodent model of diabetes. Diabetes was induced in rats by an intraperitoneal injection of streptozotocin. Animals were divided into the following experimental groups: control rats; control animals treated with DHA; untreated diabetic rats; diabetic rats treated with insulin; diabetic rats treated with DHA; diabetic rats treated with insulin and DHA. At the end of week 12, rats were killed and one of the hemispheres was cryosectioned and the other was dissected and hippocampi homogenized. The number of bromodeoxyuridine positive cells in the hippocampus of diabetic rats was decreased, and the latency time to find the platform in the Morris Water maze was significantly increased in the diabetic rats when compared to controls. No changes where observed in the expression of p21 in the hippocampus of control and diabetic rats. Biochemical markers of oxidative stress were altered in hippocampus of diabetic rats, and NFκB-positive cells were increased in the hippocampus of diabetic rats when compared to controls. Treatment with DHA, or the combination of DHA with insulin, significantly restored to control levels all the values mentioned above. Our findings confirm a pivotal role for oxidative stress as well as NF-κB, but not p21, in diabetes-induced hippocampal impairments. Administration of DHA as well as insulin prevented the changes induced by diabetes in hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ryan CM, Williams TM, Finegold DN, Orchard TJ (1993) Cognitive dysfunction in adults with type 1 (insulin-dependent) diabetes mellitus of long duration: effects of recurrent hypoglycaemia and other chronic complications. Diabetologia 36:329–334

    Article  PubMed  CAS  Google Scholar 

  2. Flood JF, Mooradian AD, Morley JE (1990) Characteristics of learning and memory in streptozotocin-induced diabetic mice. Diabetes 39:1391–1398

    Article  PubMed  CAS  Google Scholar 

  3. Beauquis J, Saravia F, Coulaud J, Roig P, Dardenne M et al (2008) Prominently decreased hippocampal neurogenesis in a spontaneous model of type 1 diabetes, the nonobese diabetic mouse. Exp Neurol 210:359–367

    Article  PubMed  CAS  Google Scholar 

  4. Jackson-Guilford J, Leander J, Nisenbaum L (2000) The effect of streptozotocin induced diabetes on cell proliferation in the rat dentate gyrus. Neurosci Lett 293:91–94

    Article  PubMed  CAS  Google Scholar 

  5. Zhang WJ, Tan YF, Yue JT, Vranic M, Wojtowicz JM (2008) Impairment of hippocampal neurogenesis in streptozotocin-treated diabetic rats. Acta Neurol Scand 117:205–210

    Article  PubMed  Google Scholar 

  6. Puchowicz MA, Xu K, Magnes D, Miller C, Lust WD, Kern TS, LaManna JC (2004) Comparison of glucose influx and blood flow in retina and brain of diabetic rats. J Cereb Blood Flow Metab 24:449–457

    Article  PubMed  Google Scholar 

  7. Shors TJ, Miesegaes G, Baylin A, Zhao M, Rydel TGE (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376

    Article  PubMed  CAS  Google Scholar 

  8. Makimattila S, Malmberg-Ceder K, Hakkinen AN, Vuori K, Salonen O, Summanen P, Yki-Jarvinen K, Kaste M, Heikkinen S, Lundbom M, Roine RO (2004) Brain metabolic alterations in patients with type 1 diabetes-hyperglycemia-induced injury. J Cereb Blood Flow Metab 24:1393–1399

    Article  PubMed  Google Scholar 

  9. Kempermann G, Gage FH (1999) New nerve cells for the adult brain. Sci Am 280:48–53

    Article  PubMed  CAS  Google Scholar 

  10. Gould E, Deylin A, Tanapat T, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2:260–265

    Article  PubMed  CAS  Google Scholar 

  11. Herrera DG, Yagüe AG, Johnsen-Soriano S, Bosch-Morell F, Collado-Morente L, Muriach M, Romero FJ, García-Verdugo JM (2003) Selective impairment of hippocampal neurogenesis by chronic alcoholism: protective effects of an antioxidant. Proc Natl Acad Sci USA 100:7919–7924

    Article  PubMed  CAS  Google Scholar 

  12. Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM et al (1996) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45:1259–1266

    Article  PubMed  CAS  Google Scholar 

  13. Biessels GJ, Kamal A, Urban IJ, Spruijt BM, Erkelens DW et al (1998) Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 800:125–135

    Article  PubMed  CAS  Google Scholar 

  14. Yamada KA, Rensing N, Izumi Y, Erausquin GAD, Gazit V, Dorsey DA, Herrera DG (2004) The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Pediatr Res 55:372–379

    Article  PubMed  CAS  Google Scholar 

  15. Li Z, Zhang W, Grunberger G, Sima AF (2002) Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res 946:212–231

    Article  Google Scholar 

  16. Pechnick RN, Zonis S, Wawrowsky K, Pourmorady J, Chesnokova V (2008) p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus. Proc Natl Acad Sci USA 105:1358–1363

    Article  PubMed  CAS  Google Scholar 

  17. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  PubMed  CAS  Google Scholar 

  18. Piette J, Piret B, Bonizzi G, Schoonbroodt S, Merville MP, Legrand-Poels S, Bours V (1997) Multiple redox regulation in NF-kappaB transcription factor activation. Biol Chem 378:1237–1245

    PubMed  CAS  Google Scholar 

  19. Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG (2001) NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 12:73–90

    Article  PubMed  CAS  Google Scholar 

  20. Seitz CS, Deng H, Hinata K, Lin Q, Khavari PA (2000) Nuclear factor kappaB subunits induce epithelial cell growth arrest. Cancer Res 60:4085–4092

    PubMed  CAS  Google Scholar 

  21. Liu GH, Qu J, Shen X (2008) NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 1783:713–727

    Article  PubMed  CAS  Google Scholar 

  22. He C, Qu X, Cui L, Wang J, Kang JX (2009) Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci USA 106:11370–11375

    Article  PubMed  CAS  Google Scholar 

  23. Bazan NG (2005) Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol 15:159–166

    Article  PubMed  CAS  Google Scholar 

  24. Martin RE, Bazan NG (1992) Changing fatty acid content of growth cone lipids prior to synaptogenesis. J Neurochem 59:318–325

    Article  PubMed  CAS  Google Scholar 

  25. Birch EE, Garfield S, Hoffman DR, Uauy R, Birch DG (2000) A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol 42:174–181

    Article  PubMed  CAS  Google Scholar 

  26. Gamoh S, Hashimoto M, Hossain S, Masumura S (2001) Chronic administration of docosahexaenoic acid improves the performance of radial arm maze task in aged rats. Clin Exp Pharmacol Physiol 28:266–270

    Article  PubMed  CAS  Google Scholar 

  27. Fedorova I, Hussein N, Di Martino C, Moriguchi T, Hoshiba J, Majchrzak S, Salem N Jr (2007) An n-3 fatty acid deficient diet affects mouse spatial learning in the Barnes circular maze. Prostaglandins Leukot Essent Fatty Acids 77:269–277

    Article  PubMed  CAS  Google Scholar 

  28. Wang TM, Chen CJ, Lee TS, Chao HY, Wu WH, Hsieh SC, Sheu HH, Chiang AN (2011) Docosahexaenoic acid attenuates VCAM-1 expression and NF-κB activation in TNF-α-treated human aortic endothelial cells. Nutr Biochem 22(2):187–194

    Article  CAS  Google Scholar 

  29. Bazan NG (2006) Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 29:263–271

    Article  PubMed  CAS  Google Scholar 

  30. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 101:8491–8496

    Article  PubMed  CAS  Google Scholar 

  31. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG (2003) Novel docosanoids inhibit brain ischemia-reperfusion mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817

    Article  PubMed  CAS  Google Scholar 

  32. Richard MJ, Guiraud P, Meo J, Favier A (1992) High performance liquid chromatography separation of malondialdehyde thiobarbituric acid adduct in biological materials (plasma and human cell) using a commercially available reagent. J Chromatogr 577:9–18

    Article  PubMed  CAS  Google Scholar 

  33. Romero MJ, Bosch-Morell F, Romero B, Rodrigo JM, Serra MA, Romero FJ (1998) Serum malondialdehyde: possible use for the clinical management of chronic hepatitis C patients. Free Radical Biol Med 25:993–997

    Article  CAS  Google Scholar 

  34. Lawrence RA, Parkhill LK, Burk RF (1978) Hepatic cytosolic non-selenium dependent glutathione peroxidase activity: its nature and the effect of selenium deficiency. J Nutr 108:981–987

    PubMed  CAS  Google Scholar 

  35. Reed DJ, Babson JR, Beatty PW, Brodie AE, Ellis WW, Potter DW (1980) High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related disulfides. Anal Biochem 106:55–62

    Article  PubMed  CAS  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  37. Messier C (2005) Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiol Aging 26:26–30

    Article  PubMed  Google Scholar 

  38. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP (2008) Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11:309–317

    Article  PubMed  CAS  Google Scholar 

  39. O’Neill LA, Kaltschmidt C (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20:252–258

    Article  PubMed  Google Scholar 

  40. Mattson MP, Camandola S (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107:247–254

    Article  PubMed  CAS  Google Scholar 

  41. Tergaonkar V (2006) NFkappaB pathway: a good signaling paradigm and therapeutic target. Int J Biochem Cell Biol 38:1647–1653

    Article  PubMed  CAS  Google Scholar 

  42. Grilli M, Memo M (1999) Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Div Differ 6:22–27

    Article  CAS  Google Scholar 

  43. Packer MA, Stasiv Y, Benraiss A, Chmielnicki E, Grinberg A, Westphal H, Goldman SA, Enikolopov G (2003) Nitric oxide negatively regulates mammalian adult neurogenesis. Proc Natl Acad Sci USA 100:9566–9571

    Article  PubMed  CAS  Google Scholar 

  44. Fujioka T, Fujioka A, Duman RS (2004) Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. J Neurosci 24:319–328

    Article  PubMed  CAS  Google Scholar 

  45. Nakagawa S, Kim JE, Lee R, Chen J, Fujioka T, Malberg J, Tsuji S, Duman RS (2002) Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci 22:9868–9876

    PubMed  CAS  Google Scholar 

  46. Nakagawa S, Kim JE, Lee R, Malberg JE, Chen J, Steffen C, Zhang YJ, Nestler EJ, Duman RS (2002) Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 22:3673–3682

    PubMed  CAS  Google Scholar 

  47. Zou J, Crews F (2006) CREB and NF-κB transcription factors regulate densitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell Mol Neurobiol 26:4–6

    Article  Google Scholar 

  48. Shenkar R, Yum HK, Arcaroli J, Kupfner J, Abraham E (2001) Interactions between CBP, NF-kappaB, and CREB in the lungs after hemorrhage and endotoxemia. Am J Physiol Lung Cell Mol Physiol 281:L418–L426

    PubMed  CAS  Google Scholar 

  49. Wang W, Shinto L, Connor WE, Quinn JF (2008) Biomarkers in Alzheimer’s disease: the association between carotenoids, n-3 fatty acids, and dementia severity. J Alzheimer’s Dis 13:31–38

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Funds from Ministerio de Ciencia e Innovación (SAF 2010-21317) and Copernicus-Santander (PRCEU-UCH/COP(01)10/11) programme of the Universidad CEU—Cardenal Herrera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez-Nölting, R., Arnal, E., Barcia, J.M. et al. Protection by DHA of Early Hippocampal Changes in Diabetes: Possible Role of CREB and NF-κB. Neurochem Res 37, 105–115 (2012). https://doi.org/10.1007/s11064-011-0588-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0588-x

Keywords

Navigation