Skip to main content
Log in

Expression Levels of the BDNF Gene and Histone Modifications Around Its Promoters in the Ventral Tegmental Area and Locus Ceruleus of Rats During Forced Abstinence from Morphine

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Brain-derived neurotrophic factor (BDNF) plays a role in mediating molecular, cellular, and behavioral adaptations underlying drug addiction. Here, we examined the influence of withdrawal from repeated morphine treatment on the expression of BDNF mRNA in the ventral tegmental area (VTA) and locus coeruleus (LC) of the rat brain. We also studied whether alternations in mRNA levels of BDNF in these tissues are associated with histone modifications around promoters II and III of the BDNF gene. Thus, chromatin immunoprecipitation (CHIP) and quantitative (q)-PCR were employed to assess acetylation of histone H3 at K9/K14 and trimethylation of histone H3 at K9. Results of qRT-PCR showed that levels of BDNF mRNA in both VTA and LC were significantly increased 7 days rather than 2 h or 24 h following the last injection of morphine. Consistently, CHIP and qPCR analysis revealed that on day 7 of morphine abstinence, both VTA and LC levels of histone methylation at BDNF promoters II and III of morphine treated rats were significantly lower than control animals. Morphine withdrawal caused only a significant increase in H3 acetylation at the promoter II in the LC. These data demonstrate the involvement of histone H3 methylation in the regulation of gene expression in the VTA and LC of rats during forced abstinence of morphine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476

    Article  PubMed  CAS  Google Scholar 

  2. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  PubMed  CAS  Google Scholar 

  3. Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl 1):33–46

    Article  PubMed  CAS  Google Scholar 

  4. Seroogy KB, Lundgren KH, Tran TM, Guthrie KM, Isackson PJ, Gall CM (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mrnas. J Comp Neurol 342:321–334

    Article  PubMed  CAS  Google Scholar 

  5. Numan S, Seroogy KB (1999) Expression of trkb and trkc mrnas by adult midbrain dopamine neurons: a double-label in situ hybridization study. J Comp Neurol 403:295–308

    Article  PubMed  CAS  Google Scholar 

  6. Bolanos CA, Nestler EJ (2004) Neurotrophic mechanisms in drug addiction. Neuromolecular Med 5:69–83

    Article  PubMed  CAS  Google Scholar 

  7. Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT, Russo SJ, Laplant Q, Sasaki TS, Whistler KN, Neve RL, Self DW, Nestler EJ (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48:303–314

    Article  PubMed  CAS  Google Scholar 

  8. Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278:58–63

    Article  PubMed  CAS  Google Scholar 

  9. Seroogy KB, Gall CM (1993) Expression of neurotrophins by midbrain dopaminergic neurons. Exp Neurol 124:119–128

    Article  PubMed  CAS  Google Scholar 

  10. King VR, Michael GJ, Joshi RK, Priestley JV (1999) Trka, trkb, and trkc messenger rna expression by bulbospinal cells of the rat. Neuroscience 92:935–944

    Article  PubMed  CAS  Google Scholar 

  11. Numan S, Lane-Ladd SB, Zhang L, Lundgren KH, Russell DS, Seroogy KB, Nestler EJ (1998) Differential regulation of neurotrophin and trk receptor mrnas in catecholaminergic nuclei during chronic opiate treatment and withdrawal. J Neurosci 18:10700–10708

    PubMed  CAS  Google Scholar 

  12. McQuown SC, Wood MA (2010) Epigenetic regulation in substance use disorders. Curr Psychiatry Rep 12:145–153

    Article  PubMed  Google Scholar 

  13. Robison AJ, Nestler EJ (2011) Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 12:623–637

    Article  PubMed  CAS  Google Scholar 

  14. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  PubMed  CAS  Google Scholar 

  15. Renthal W, Nestler EJ (2009) Chromatin regulation in drug addiction and depression. 11:257–268

    PubMed  Google Scholar 

  16. Hall FS, Drgonova J, Goeb M, Uhl GR (2003) Reduced behavioral effects of cocaine in heterozygous brain-derived neurotrophic factor (bdnf) knockout mice. Neuropsychopharmacology 28:1485–1490

    Article  PubMed  CAS  Google Scholar 

  17. Sadri-Vakili G, Kumaresan V, Schmidt HD, Famous KR, Chawla P, Vassoler FM, Overland RP, Xia E, Bass CE, Terwilliger EF, Pierce RC, Cha JH (2010) Cocaine-induced chromatin remodeling increases brain-derived neurotrophic factor transcription in the rat medial prefrontal cortex, which alters the reinforcing efficacy of cocaine. J Neurosci 30:11735–11744

    Article  PubMed  CAS  Google Scholar 

  18. Vargas-Perez H, Ting AKR, Walton CH, Hansen DM, Razavi R, Clarke L, Bufalino MR, Allison DW, Steffensen SC, van der Kooy D (2009) Ventral tegmental area bdnf induces an opiate-dependent-like reward state in naive rats. Science 324:1732–1734

    Article  PubMed  CAS  Google Scholar 

  19. Horger BA, Iyasere CA, Berhow MT, Messer CJ, Nestler EJ, Taylor JR (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J Neurosci 19:4110–4122

    PubMed  CAS  Google Scholar 

  20. Lu L, Dempsey J, Liu SY, Bossert JM, Shaham Y (2004) A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J Neurosci 24:1604–1611

    Article  PubMed  CAS  Google Scholar 

  21. Badiani A, Belin D, Epstein D, Calu D, Shaham Y (2011) Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci 12:685–700

    Article  PubMed  CAS  Google Scholar 

  22. Ammon S, Mayer P, Riechert U, Tischmeyer H, Hollt V (2003) Microarray analysis of genes expressed in the frontal cortex of rats chronically treated with morphine and after naloxone precipitated withdrawal. Brain Res Mol Brain Res 112:113–125

    Article  PubMed  CAS  Google Scholar 

  23. Hatami H, Oryan S, Semnanian S, Kazemi B, Bandepour M, Ahmadiani A (2007) Alterations of bdnf and nt-3 genes expression in the nucleus paragigantocellularis during morphine dependency and withdrawal. Neuropeptides 41:321–328

    Article  PubMed  CAS  Google Scholar 

  24. Paxinos GWC (1998) The rat brain in stereotaxic. Academic Press, San Diego

    Google Scholar 

  25. Zou J, Crews F (2006) Creb and nf-kappab transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell Mol Neurobiol 26:385–405

    Article  PubMed  CAS  Google Scholar 

  26. Tsankova NM, Kumar A, Nestler EJ (2004) Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci 24:5603–5610

    Article  PubMed  CAS  Google Scholar 

  27. Wan L, Xie Y, Su L, Liu Y, Wang Y, Wang Z (2011) Rack1 affects morphine reward via bdnf. Brain Res 1416:26–34

    Article  PubMed  CAS  Google Scholar 

  28. Liang J, Zheng X, Chen J, Li Y, Xing X, Bai Y (2011) Roles of bdnf, dopamine d(3) receptors, and their interactions in the expression of morphine-induced context-specific locomotor sensitization. Eur Neuropsychopharmacol 21:825–834

    Article  PubMed  CAS  Google Scholar 

  29. Yamada K, Mizuno M, Nabeshima T (2002) Role for brain-derived neurotrophic factor in learning and memory. Life Sci 70:735–744

    Article  PubMed  CAS  Google Scholar 

  30. Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD (2002) From acquisition to consolidation: On the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9:224–237

    Article  PubMed  Google Scholar 

  31. Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T (2007) Dissecting the human bdnf locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 90:397–406

    Article  PubMed  CAS  Google Scholar 

  32. McClung CA, Nestler EJ, Zachariou V (2005) Regulation of gene expression by chronic morphine and morphine withdrawal in the locus ceruleus and ventral tegmental area. J Neurosci 25:6005–6015

    Article  PubMed  CAS  Google Scholar 

  33. Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 23:742–747

    PubMed  CAS  Google Scholar 

  34. Chu NN, Zuo YF, Meng L, Lee DY, Han JS, Cui CL (2007) Peripheral electrical stimulation reversed the cell size reduction and increased bdnf level in the ventral tegmental area in chronic morphine-treated rats. Brain Res 1182:90–98

    Article  PubMed  CAS  Google Scholar 

  35. Maze I, Feng J, Wilkinson MB, Sun H, Shen L, Nestler EJ (2011) Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proc Natl Acad Sci USA 108:3035–3040

    Article  PubMed  CAS  Google Scholar 

  36. Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 117:721–733

    Article  PubMed  CAS  Google Scholar 

  37. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527

    Article  PubMed  CAS  Google Scholar 

  38. Maze I, Nestler EJ (2011) The epigenetic landscape of addiction. Ann N Y Acad Sci 1216:99–113

    Article  PubMed  CAS  Google Scholar 

  39. Renthal W, Nestler EJ (2008) Epigenetic mechanisms in drug addiction. Trends Mol Med 14:341–350

    Article  PubMed  CAS  Google Scholar 

  40. Jing L, Luo J, Zhang M, Qin WJ, Li YL, Liu Q, Wang YT, Lawrence AJ, Liang JH (2011) Effect of the histone deacetylase inhibitors on behavioural sensitization to a single morphine exposure in mice. Neurosci Lett 494:169–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper has been extracted from the Ph.D thesis of Farideh Jalali Mashayekhi and was supported by Grant Number 4269 from Vice-chancellor for Research Affairs of Shiraz University of Medical Sciences. We acknowledge the cooperation of Dr Nader Tanideh from the Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz-Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Owji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalali Mashayekhi, F., Rasti, M., Rahvar, M. et al. Expression Levels of the BDNF Gene and Histone Modifications Around Its Promoters in the Ventral Tegmental Area and Locus Ceruleus of Rats During Forced Abstinence from Morphine. Neurochem Res 37, 1517–1523 (2012). https://doi.org/10.1007/s11064-012-0746-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0746-9

Keywords

Navigation