Skip to main content
Log in

Effects of Fluctuating Glucose Levels on Neuronal Cells In Vitro

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

There is increasing evidence for glucose fluctuation playing a role in the damaging effects of diabetes on various organs, including the brain. We aimed to study the effects of glycaemic variation (GV) upon mitochondrial activity using an in vitro human neuronal model. The metabolic disturbance of GV in neuronal cells, was mimicked via exposure of neuroblastoma cells SH-SY5Y to constant glucose or fluctuating (i.e. 6 h cycles) for 24 and 48 h. Mitochondrial dehydrogenase activity was determined via MTT assay. Cell mitochondrial activity (MTT) was moderately decreased in constant high glucose, but markedly decreased following 24 and 48 h of cyclical glucose fluctuations. Glucose transport determined via 2-deoxy-D-[1-14C] glucose uptake was regulated in an exaggerated manner in response to glucose variance, accompanied by modest changes in GLUT 1 mRNA abundance. Osmotic components of these glucose effects were investigated in the presence of the osmotic-mimics mannitol and l-glucose. Both treatments showed that fluctuating osmolality did not result in a significant change in mitochondrial activity and had no effects on 14Cglucose uptake, suggesting that adverse effects on mitochondrial function were specifically related to metabolically active glucose fluctuations. Apoptosis gene expression showed that both intrinsic and extrinsic apoptotic pathways were modulated by glucose variance, with two major response clusters corresponding to (i) glucose stress-modulated genes, (ii) glucose mediated osmotic stress-modulated genes. Gene clustering analysis by STRING showed that most of the glucose stress-modulated genes were components of the intrinsic/mitochondrial apoptotic pathway including Bcl-2, Caspases and apoptosis executors. On the other hand the glucose mediated osmotic stress-modulated genes were mostly within the extrinsic apoptotic pathway, including TNF receptor and their ligands and adaptors/activators/initiators of apoptosis. Fluctuating glucose levels have a greater adverse effect on neuronal cell energy regulation mechanisms than either sustained high or low glucose levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agholme L, Lindstrom T, Kagedal K, Marcusson J, Hallbeck M (2010) An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis 20:1069–1082

    PubMed  CAS  Google Scholar 

  2. Ahn Y-M, Kim SK, Kang J-S, Lee B-C (2012) Platycodon grandiflorum modifies adipokines and the glucose uptake in high-fat diet in mice and L6 muscle cells. J Pharm Pharmacol 64:697–704

    Article  PubMed  CAS  Google Scholar 

  3. Airoldi I, Di Carlo E, Cocco C, Taverniti G, D’Antuono T, Ognio E, Watanabe M, Ribatti D, Pistoia V (2007) Endogenous IL-12 triggers an antiangiogenic program in melanoma cells. Proc Natl Acad Sci USA 104:3996–4001

    Article  PubMed  CAS  Google Scholar 

  4. Baghurst PA, Rodbard D, Cameron FJ (2010) The minimum frequency of glucose measurements from which glycemic variation can be consistently assessed. J Diabetes Sci Technol 4:1382–1385

    PubMed  Google Scholar 

  5. Biedler JL, Helson L, Spengler BA (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33:2643–2652

    PubMed  CAS  Google Scholar 

  6. Bilan PJ, Mitsumoto Y, Ramlal T, Klip A (1992) Acute and long-term effects of insulin-like growth factor I on glucose transporters in muscle cells. Translocation and biosynthesis. FEBS Lett 298:285–290

    Article  PubMed  CAS  Google Scholar 

  7. Bratton SB, Lewis J, Butterworth M, Duckett CS, Cohen GM (2002) XIAP inhibition of caspase-3 preserves its association with the Apaf-1 apoptosome and prevents CD95- and Bax-induced apoptosis. Cell Death Differ 9:881–892

    Article  PubMed  CAS  Google Scholar 

  8. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspsase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  PubMed  CAS  Google Scholar 

  9. Cameron FJ, Baghurst PA, Rodbard D (2010) Assessing glycemic variation: why, when and how? Pediatr Endocrinol Rev 7(Suppl 3):432–444

    PubMed  Google Scholar 

  10. Cameron FJ, Northam EA, Ambler GR, Daneman D (2007) Routine psychological screening in youth with type 1 diabetes and their parents: a notion whose time has come? Diabetes Care 30:2716–2724

    Article  PubMed  Google Scholar 

  11. Cardoso S, Santos MS, Seica R, Moreira PI (2010) Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochim Biophys Acta 1802:942–951

    PubMed  CAS  Google Scholar 

  12. Ceriello A, Ihnat MA (2010) ‘Glycaemic variability’: a new therapeutic challenge in diabetes and the critical care setting. Diabet Med 27:862–867

    Article  PubMed  CAS  Google Scholar 

  13. Chen N, Ye XC, Chu K, Navone NM, Sage EH, Yu-Lee LY, Logothetis CJ, Lin SH (2007) A secreted isoform of ErbB3 promotes osteonectin expression in bone and enhances the invasiveness of prostate cancer cells. Cancer Res 67:6544–6548

    Article  PubMed  CAS  Google Scholar 

  14. Christensen J, Steain M, Slobedman B, Abendroth A (2011) Differentiated neuroblastoma cells provide a highly efficient model for studies of productive varicella-zoster virus infection of neuronal cells. J Virol, JVI.00515–JVI.00511

  15. Cregan SP, Fortin A, MacLaurin JG et al (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158:507–517. doi:10.1083/jcb.200202130

    Article  PubMed  CAS  Google Scholar 

  16. Davis EA, Soong SA, Byrne GC, Jones TW (1996) Acute hyperglycaemia impairs cognitive function in children with IDDM. J Pediatr Endocrinol Metab 9:455–461

    Article  PubMed  CAS  Google Scholar 

  17. Fladeby C, Bjonness B, Serck-Hanssen G (1996) GLUT1-mediated glucose transport and its regulation by IGF-I in cultured bovine chromaffin cells. J Cell Physiol 169:242–247

    Article  PubMed  CAS  Google Scholar 

  18. Fladeby C, Skar R, Serck-Hanssen G (2003) Distinct regulation of glucose transport and GLUT1/GLUT3 transporters by glucose deprivation and IGF-I in chromaffin cells. Biochim Biophys Acta 1593:201–208

    Article  PubMed  CAS  Google Scholar 

  19. Giannini S, Benvenuti S, Luciani P et al (2008) Intermittent high glucose concentrations reduce neuronal precursor survival by altering the IGF system: the involvement of the neuroprotective factor DHCR24 (Seladin-1). J Endocrinol 198:523–532

    Article  PubMed  CAS  Google Scholar 

  20. Gonder-Frederick LA, Zrebiec JF, Bauchowitz AU, Ritterband LM, Magee JC, Cox DJ, Clarke WL (2009) Cognitive function is disrupted by both hypo- and hyperglycemia in school-aged children with type 1 diabetes: a field study. Diabetes Care 32:1001–1006

    Article  PubMed  Google Scholar 

  21. Green DR (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell 102:1–4

    Article  PubMed  CAS  Google Scholar 

  22. Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210

    Article  PubMed  CAS  Google Scholar 

  23. Higgins S, Wong SHX, Richner M, Rowe CL, Newgreen DF, Werther GA, Russo VC (2009) Fibroblast growth factor 2 reactivates G1 checkpoint in SK-N-MC cells via regulation of p21, inhibitor of differentiation genes (Id1-3), and epithelium-mesenchyme transition-like events. Endocrinology 150:4044–4055. doi:10.1210/en.2008-1797

    Article  PubMed  CAS  Google Scholar 

  24. Ikeda R, Iwashita KI, Sumizawa T et al (2008) Hyperosmotic stress up-regulates the expression of major vault protein in SW620 human colon cancer cells. Exp Cell Res 314:3017–3026

    Article  PubMed  CAS  Google Scholar 

  25. Inoue JI, Ishida T, Tsukamoto N, Kobayashi N, Naito A, Azuma S, Yamamoto T (2000) Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res 254:14–24

    Article  PubMed  CAS  Google Scholar 

  26. Kobayashi K, Xin Y, Ymer SI, Werther GA, Russo VC (2007) Subtractive hybridisation screen identifies genes regulated by glucose deprivation in human neuroblastoma cells. Brain Res 1170:129–139

    Google Scholar 

  27. Kong A, Donath S, Harper CA, Werther GA, Cameron FJ (2005) Rates of diabetes mellitus-related complications in a contemporary adolescent cohort. J Pediatr Endocrinol Metab 18:247–255

    Article  PubMed  CAS  Google Scholar 

  28. Lee MS, Choi S-E, Ha ES, et al (2012) Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB. Metabolism (in press)

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  30. Lopes FM, Schröder R, da Frota ML Jr et al (2010) Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 1337:85–94

    Google Scholar 

  31. Maher EA, Marin-Valencia I, Bachoo RM, et al. (2012) Metabolism of [U-13C]glucose in human brain tumors in vivo. NMR in Biomed

  32. Mohsin F, Craig ME, Cusumano J, Chan AK, Hing S, Lee JW, Silink M, Howard NJ, Donaghue KC (2005) Discordant trends in microvascular complications in adolescents with type 1 diabetes from 1990 to 2002. Diabetes Care 28:1974–1980

    Article  PubMed  Google Scholar 

  33. Nagata S (1999) Fas ligand-induced apoptosis. Annu Rev Genet 33:29–55

    Article  PubMed  CAS  Google Scholar 

  34. Nalysnyk L, Hernandez-Medina M, Krishnarajah G (2010) Glycaemic variability and complications in patients with diabetes mellitus: evidence from a systematic review of the literature. Diabetes Obes Metab 12:288–298

    Article  PubMed  CAS  Google Scholar 

  35. Northam EA, Rankins D, Cameron FJ (2006) Therapy insight: the impact of type 1 diabetes on brain development and function. Nat Clin Pract Neurol 2:78–86

    Article  PubMed  Google Scholar 

  36. Orlinick JR, Chao MV (1998) TNF-related ligands and their receptors. Cell Signal 10:543–551

    Article  PubMed  CAS  Google Scholar 

  37. Ose N, Sawabata N, Minami M, Inoue M, Shintani Y, Kadota Y, Okumura M (2012) Lymph node metastasis diagnosis using positron emission tomography with 2-[18F] fluoro-2-deoxy-d-glucose as a tracer and computed tomography in surgical cases of non-small cell lung cancer. Eur J Cardio Thoracic Surg 1–4. doi:10.1093/ejcts/ezr287

  38. Otto NM, Schindler R, Lun A, Boenisch O, Frei U, Oppert M (2008) Hyperosmotic stress enhances cytokine production and decreases phagocytosis in vitro. Crit Care 12:R107

    Article  PubMed  Google Scholar 

  39. Ozturk G, Erdogan E, Ozturk M, Cengiz N, Him A (2008) Differential analysis of effect of high glucose level in the development of neuropathy in a tissue culture model of diabetes mellitus: role of hyperosmolality. Exp Clin Endocrinol Diabetes 116:582–591

    Article  PubMed  CAS  Google Scholar 

  40. Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A (2006) Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev 22:198–203

    Article  PubMed  CAS  Google Scholar 

  41. Poomthavorn P, Wong SHX, Higgins S, Werther GA, Russo VC (2009) Activation of a prometastatic gene expression program in hypoxic neuroblastoma cells. Endocr Relat Cancer 16:991–1004. doi:10.1677/ERC-08-0340

    Article  PubMed  CAS  Google Scholar 

  42. Purcell SH, Chi MM, Moley KH (2012) Insulin-stimulated glucose uptake occurs in specialized cells within the cumulus oocyte complex. Endocrinology 153(5):2444–2454

    Google Scholar 

  43. Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A (2003) Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 52:2795–2804

    Article  PubMed  CAS  Google Scholar 

  44. Racz B, Reglodi D, Fodor B, Gasz B, Lubics A, Gallyas JF, Roth E, Borsiczky B (2007) Hyperosmotic stress-induced apoptotic signaling pathways in chondrocytes. Bone 40:1536–1543

    Article  PubMed  CAS  Google Scholar 

  45. Rangel-Moreno J, Hartson L, Navarro C, Gaxiola M, Selman M, Randall TD (2006) Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J Clin Invest 116:3183–3194

    Article  PubMed  CAS  Google Scholar 

  46. Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A (2001) Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab 281:E924–E930

    PubMed  CAS  Google Scholar 

  47. Rivolta I, Panariti A, Lettiero B, Sesana S, Gasco P, Gasco MR, Masserini M, Miserocchi G (2011) Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles. J Physiol Pharmacol 62:45–53

    PubMed  CAS  Google Scholar 

  48. Russo VC, Kobayashi K, Najdovska S, Baker NL, Werther GA (2004) Neuronal protection from glucose deprivation via modulation of glucose transport and inhibition of apoptosis: a role for the insulin-like growth factor system. Brain Res 1009:40–53

    Article  PubMed  CAS  Google Scholar 

  49. Ryan CM (2006) Why is cognitive dysfunction associated with the development of diabetes early in life? The diathesis hypothesis. Pediatr Diabetes 7:289–297

    Article  PubMed  Google Scholar 

  50. Ryan CM, Atchison J, Puczynski S, Puczynski M, Arslanian S, Becker D (1990) Mild hypoglycemia associated with deterioration of mental efficiency in children with insulin-dependent diabetes mellitus. J Pediatr 117:32–38

    Article  PubMed  CAS  Google Scholar 

  51. Ryan CM, Becker DJ (1999) Hypoglycemia in children with type 1 diabetes mellitus. Risk factors, cognitive function, and management. Endocrinol Metab Clin North Am 28:883–900

    Article  PubMed  CAS  Google Scholar 

  52. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96:10964–10967

    Article  PubMed  CAS  Google Scholar 

  53. Schisano B, Tripathi G, McGee K, McTernan PG, Ceriello A (2011) Glucose oscillations, more than constant high glucose, induce p53 activation and a metabolic memory in human endothelial cells. Diabetologia 54:1219–1226

    Article  PubMed  CAS  Google Scholar 

  54. Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME (1998) Apoptosis signaling by death receptors. Eur J Biochem 254:439–459

    Article  PubMed  CAS  Google Scholar 

  55. Siegelaar SE, Holleman F, Hoekstra JB, DeVries JH (2010) Glucose variability; does it matter? Endocr Rev 31:171–182

    Article  PubMed  CAS  Google Scholar 

  56. Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568

    Article  PubMed  Google Scholar 

  57. Tomlinson DR, Gardiner NJ (2008) Glucose neurotoxicity. Nat Rev Neurosci 9:36–45

    Article  PubMed  CAS  Google Scholar 

  58. Vincent AM, Russell JW, Low P, Feldman EL (2004) Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 25:612–628

    Article  PubMed  CAS  Google Scholar 

  59. Yonezawa T, Kurata R, Kimura M, Inoko H (2011) Which CIDE are you on? Apoptosis and energy metabolism. Mol BioSyst 7:91–100

    Article  PubMed  CAS  Google Scholar 

  60. Yu Y, Li W, Wojciechowski B, Jenkins AJ, Lyons TJ (2007) Effects of D- and l-glucose and mannitol on retinal capillary cells: inhibition by nanomolar aminoguanidine. Am J Pharmacol Toxicol 2:148–158

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thanks Miss Romanie Dekker and Miss Michelle de Mol (VU University of Amsterdam The Netherland) for their technical assistance in the preliminary set up of these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fergus J. Cameron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, V.C., Higgins, S., Werther, G.A. et al. Effects of Fluctuating Glucose Levels on Neuronal Cells In Vitro. Neurochem Res 37, 1768–1782 (2012). https://doi.org/10.1007/s11064-012-0789-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0789-y

Keywords

Navigation