Skip to main content
Log in

Beyond Polarity: Functional Membrane Domains in Astrocytes and Müller Cells

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Various ependymoglial cells display varying degrees of process specialization, in particular processes contacting mesenchymal borders (pia, blood vessels, vitreous body), or those lining the ventricular surface. Within the neuropil, glial morphology, cellular contacts, and interaction partners are complex. It appears that glial processes contacting neurons, specific parts of neurons, or mesenchymal or ventricular borders are characterized by specialized membranes. We propose a concept of membrane domains in addition to the existing concept of ependymoglial polarity. Such membrane domains are equipped with certain membrane-bound proteins, enabling them to function in their specific environment. This review focuses on Müller cells and astrocytes and discusses exemplary the localization of established glial markers in membrane domains. We distinguish three functional glial membrane domains based on their typical molecular arrangement. The domain of the endfoot specifically displays the complex of dystrophin-associated proteins, aquaporin 4 and the potassium channel Kir4.1. We show that the domain of microvilli and the peripheral glial process in the Müller cell share the presence of ezrin, as do peripheral astrocyte processes. As a third domain, the Müller cell has peripheral glial processes related to a specific subtype of synapse. Although many details remain to be studied, the idea of glial membrane domains may permit new insights into glial function and pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Deiters O (1865) In: Schultze M (ed) Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugetiere. Wieweg, Braunschweig, quoted from: Finger S (1994) Origins of neuroscience, a history of explorations into brain function, Oxford University Press, NY

  2. Fedoroff S (1986) Prenatal ontogenesis of astrocytes. In: Fedoroff S, Vernadakis A (eds) Astrocytes development, morphology, and regional specialisation of astrocytes, vol 1. Academic Press, Orlando, p 35–74

  3. Wolff JR, Chao TI (2004) Cytoarchitectonics of non-neuronal cells in the central nervous system. In: Bittar EE, Hertz L (eds) Advances in molecular and cell biology, vol 31., Non-neuronal cells of the nervous system: function and dysfunctionElsevier, Amsterdam, pp 1–52

    Google Scholar 

  4. Prothmann C, Wellard J, Berger J, Hamprecht B, Verleysdonk S (2001) Primary cultures as a model for studying ependymal functions: glycogen metabolism in ependymal cells. Brain Res 920:74–83

    Article  PubMed  CAS  Google Scholar 

  5. Hirschner W, Pogoda HM, Kramer C, Thiess U, Hamprecht B, Wiesmüller KH, Lautner M, Verleysdonk S (2007) Biosynthesis of Wdr16, a marker protein for kinocilia-bearing cells, starts at the time of kinocilia formation in rat, and wdr16 gene knockdown causes hydrocephalus in zebrafish. J Neurochem 101:274–288

    Article  PubMed  CAS  Google Scholar 

  6. Mullier A, Bouret SG, Prevot V, Dehouck B (2010) Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. J Comp Neurol 518:943–962

    Article  PubMed  CAS  Google Scholar 

  7. Paffenholz R, Kuhn C, Grund C, Stehr S, Franke WW (1999) The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction. Exp Cell Res 250:452–464

    Article  PubMed  CAS  Google Scholar 

  8. Reichenbach A (1989) Attempt to classify glial cells by means of their process specialization using the rabbit retinal Müller cell as an example of cytotopographic specialization of glial cells. Glia 2:250–259

    Article  PubMed  CAS  Google Scholar 

  9. Yang J, Lunde LK, Nuntagij P, Oguchi T, Camassa LM, Nilsson LN, Lannfelt L, Xu Y, Amiry-Moghaddam M, Ottersen OP, Torp R (2011) Loss of astrocyte polarization in the Tg-ArcSwe mouse model of Alzheimer’s disease. J Alzheimers Dis 27:711–722

    PubMed  CAS  Google Scholar 

  10. Wolburg H (1995) Orthogonal arrays of intramembranous particles: a review with special reference to astrocytes. J Brain Res 36:239–258

    CAS  Google Scholar 

  11. Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF (2011) Structure and function of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol 287:1–41

    Article  PubMed  CAS  Google Scholar 

  12. Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug F-M, Nielsen S, Kurachi Y, Ottersen OP (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26:47–54

    Article  PubMed  CAS  Google Scholar 

  13. Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neurosci 129:1045–1056

    Article  CAS  Google Scholar 

  14. Fort PE, Sene A, Pannicke T, Roux MJ, Forster V, Mornet D, Nudel U, Yaffe D, Reichenbach A, Sahel JA, Rendon A (2008) Kir4.1 and AQP4 associate with Dp71- and utrophin-DAPs complexes in specific and defined microdomains of Müller retinal glial cell membrane. Glia 56:597–610

    Article  PubMed  Google Scholar 

  15. Bragg AD, Amiry-Moghaddam M, Ottersen OP, Adams ME, Froehner SC (2006) Assembly of a perivascular astrocyte protein scaffold at the mammalian blood-brain barrier is dependent on alpha-syntrophin. Glia 53:879–890

    Article  PubMed  Google Scholar 

  16. Puwarawuttipanit W, Bragg AD, Frydenlund DS, Mylonakou M-N, Nagelhus EA, Peters MF, Kotchabhakdi N, Adams ME, Froehner SC, Haug F-M, Ottersen OP, Amiry-Moghaddam M (2006) Differential effect of a-syntrophin knockout on aquaporin-4 and Kir4.1 expression in retinal macroglial cells in mice. Neurosci 137:165–175

    Article  CAS  Google Scholar 

  17. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    Article  PubMed  CAS  Google Scholar 

  18. Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, Amiry-Moghaddam M (2011) An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci USA 108:2563–2568

    Article  PubMed  CAS  Google Scholar 

  19. Hertz L, Dienel GA (2005) Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res 79:11–18

    Article  PubMed  CAS  Google Scholar 

  20. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    Article  PubMed  CAS  Google Scholar 

  21. Morgello S, Uson RR, Schwartz EJ, Haber RS (1995) The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia 14:43–54

    Article  PubMed  CAS  Google Scholar 

  22. Carmignoto G, Gómez-Gonzalo M (2010) The contribution of astrocyte signalling to neurovascular coupling. Brain Res Rev 63:138–148

    Article  PubMed  CAS  Google Scholar 

  23. Derouiche A, Anlauf E, Aumann G, Mühlstädt M, Lavialle M (2002) Anatomical aspects of glia-synapse interaction: the perisynaptic glial sheath consists of a specialized astrocyte compartment. J Physiol (Paris) 96:177–182

    Article  CAS  Google Scholar 

  24. Berryman M, Franck Z, Bretscher A (1993) Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J Cell Sci 105:1025–1043

    PubMed  CAS  Google Scholar 

  25. Bonilha VL, Rayborn ME, Saotome I, McClatchey AI, Hollyfield JG (2006) Microvilli defects in retinas of ezrin knockout mice. Exp Eye Res 82:720–729

    Article  PubMed  CAS  Google Scholar 

  26. Höfer D, Drenckhahn D (1993) Molecular heterogeneity of the actin filament cytoskeleton associated with microvilli of photoreceptors, Müller’s glial cells and pigment epithelial cells of the retina. Histochem 99:29–35

    Article  Google Scholar 

  27. Derouiche A, Frotscher M (2001) Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins. Glia 36:330–341

    Article  PubMed  CAS  Google Scholar 

  28. Cornell-Bell A, Thomas PG, Smith SJ (1990) The excitatory neurotransmitter glutamate causes filopodia formation in cultured hippocampal astrocytes. Glia 3:322–334

    Article  PubMed  CAS  Google Scholar 

  29. Lavialle M, Aumann G, Anlauf E, Pröls F, Arpin M, Derouiche A (2011) Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proc Natl Acad Sci USA 108:12915–12919

    Article  PubMed  CAS  Google Scholar 

  30. Hirrlinger J, Hulsmann S, Kirchhoff F (2004) Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 20:2235–2239

    Article  PubMed  Google Scholar 

  31. Gautreau A, Louvard D, Arpin M (2002) ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling. Curr Opin Cell Biol 14:104–109

    Article  PubMed  CAS  Google Scholar 

  32. Iandiev I, Dukic-Stefanovic S, Hollborn M, Pannicke T, Härtig W, Wiedemann P, Reichenbach A, Bringmann A, Kohen L (2011) Immunolocalization of aquaporin-6 in the rat retina. Neurosci Lett 490:130–134

    Article  PubMed  CAS  Google Scholar 

  33. Benediktsson AM, Schachtele SJ, Green SH, Dailey ME (2005) Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J Neurosci Methods 141:41–53

    Article  PubMed  Google Scholar 

  34. Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with Kir4.1. Neurosci 129:905–913

    Article  CAS  Google Scholar 

  35. Kofuji P, Biedermann B, Siddharthan V, Raap M, Iandiev I, Milenkovic I, Thomzig A, Veh RW, Bringmann A, Reichenbach A (2002) Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering. Glia 39:292–303

    Article  PubMed  Google Scholar 

  36. Newman EA (1987) Distribution of potassium conductance in mammalian Müller (glial) cells: a comparative study. J Neurosci 7:2423–2432

    PubMed  CAS  Google Scholar 

  37. Iandiev I, Pannicke T, Biedermann B, Wiedemann P, Reichenbach A, Bringmann A (2006) Ischemia-reperfusion alters the immunolocalization of glial aquaporins in rat retina. Neurosci Lett 408:108–112

    Article  PubMed  CAS  Google Scholar 

  38. Iandiev I, Pannicke T, Reichenbach A, Wiedemann P, Bringmann A (2007) Diabetes alters the localization of glial aquaporins in rat retina. Neurosci Lett 421:132–136

    Article  PubMed  CAS  Google Scholar 

  39. Bergersen LH, Gundersen V (2009) Morphological evidence for vesicular glutamate release from astrocytes. Neurosci 158:260–265

    Article  CAS  Google Scholar 

  40. Reichenbach A, Derouiche A, Kirchhoff F (2010) Morphology and dynamics of perisynaptic glia. Brain Res Rev 63:11–25

    Article  PubMed  Google Scholar 

  41. Sonnewald U, Schousboe A, Qu H, Waagepetersen HS (2004) Intracellular metabolic compartmentation assessed by 13C magnetic resonance spectroscopy. Neurochem Int 45:305–310

    Article  PubMed  CAS  Google Scholar 

  42. Tsukita S, Yonemura S, Tsukita S (1997) ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr Opin Cell Biol 9:70–75

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Dr. Senckenbergische Stiftung, Frankfurt/M (AD), by Deutsche Forschungsgemeinschaft (PA 615/2-1) to TP, and by the European Union (EFRE) and the Free State of Saxony to JG. We apologize to all those whose work could not be mentioned due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Derouiche.

Additional information

Special Issue: In Honor of Leif Hertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derouiche, A., Pannicke, T., Haseleu, J. et al. Beyond Polarity: Functional Membrane Domains in Astrocytes and Müller Cells. Neurochem Res 37, 2513–2523 (2012). https://doi.org/10.1007/s11064-012-0824-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0824-z

Keywords

Navigation