Skip to main content
Log in

Metabolomic Analysis of Cerebrospinal Fluid Indicates Iron Deficiency Compromises Cerebral Energy Metabolism in the Infant Monkey

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Iron deficiency anemia affects many pregnant women and young infants worldwide. The health impact is significant, given iron’s known role in many body functions, including oxidative and lipid metabolism, protein synthesis and brain neurochemistry. The following research determined if 1H NMR spectroscopy-based metabolomic analysis of cerebrospinal fluid (CSF) could detect the adverse influence of early life iron deficiency on the central nervous system. Using a controlled dietary model in 43 infant primates, distinct differences were found in spectra acquired at 600 MHz from the CSF of anemic monkeys. Three metabolite ratios, citrate/pyruvate, citrate/lactate and pyruvate/glutamine ratios, differed significantly in the iron deficient infant and then normalized following the consumption of dietary iron and improvement of clinical indices of anemia in the heme compartment. This distinctive metabolomic profile associated with anemia in the young infant indicates that CSF can be employed to track the neurological effects of iron deficiency and benefits of iron supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T (2006) Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 64(5 Pt 2):S34–S43

    Article  PubMed  Google Scholar 

  2. Georgieff MK (2011) Long-term brain and behavioral consequences of early iron deficiency. Nutr Rev 69(Suppl 1):S43–S48

    Article  PubMed  Google Scholar 

  3. Beard JL, Felt B, Schallert T, Burhans M, Connor JR, Georgieff MK (2006) Moderate iron deficiency in infancy: biology and behavior in young rats. Behav Brain Res 170(2):224–232

    Article  PubMed  CAS  Google Scholar 

  4. Dallman PR (1986) Biochemical basis for the manifestations of iron deficiency. Ann Rev Nutr 6:13–40

    Article  CAS  Google Scholar 

  5. Lai JC, White BK, Buerstatte CR, Haddad GG, Novotny EJ Jr, Behar KL (2003) Chronic hypoxia in development selectively alters the activities of key enzymes of glucose oxidative metabolism in brain regions. Neurochem Res 28(6):933–940

    Article  PubMed  CAS  Google Scholar 

  6. Raman L, Tkac I, Ennis K, Georgieff MK, Gruetter R, Rao R (2005) In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus. Brain Res Dev Brain Res 156(2):202–209

    Article  PubMed  CAS  Google Scholar 

  7. Unger EL, Hurst AR, Georgieff MK, Schallert T, Rao R, Connor JR, Kaciroti N, Lozoff B, Felt B (2012) Behavior and monoamine deficits in prenatal and perinatal iron deficiency are not corrected by early postnatal moderate-iron or high-iron diets in rats. J Nutr 142:2040–2049

    Article  PubMed  CAS  Google Scholar 

  8. Lukowski AF, Koss M, Burden MJ, Jonides J, Nelson CA, Kaciroti N, Jimenez E, Lozoff B (2010) Iron deficiency in infancy and neurocognitive functioning at 19 years: evidence of long-term deficits in executive function and recognition memory. Nutr Neurosci 13(2):54–70

    Article  PubMed  CAS  Google Scholar 

  9. Beard JL, Unger EL, Bianco LE, Paul T, Rundle SE, Jones BC (2007) Early postnatal iron repletion overcomes lasting effects of gestational iron deficiency in rats. J Nutr 137(5):1176–1182

    PubMed  CAS  Google Scholar 

  10. Petry CD, Eaton MA, Wobken JD, Mills MM, Johnson DE, Georgieff MK (1992) Iron deficiency of liver, heart, and brain in newborn infants of diabetic mothers. J Pediatr 121(1):109–114

    Article  PubMed  CAS  Google Scholar 

  11. Guiang SF, Georgieff MK, Lambert DJ, Schmidt RL, Widness JA (1997) Intravenous iron supplementation effect on tissue iron and hemoproteins in chronically phlebotomized lambs. Am J Physiol 273(6 Pt 2):R2124–R2131

    PubMed  CAS  Google Scholar 

  12. Nagashima H, Morio Y, Meshitsuka S, Yamane K, Nanjo Y, Teshima R (2010) High-resolution nuclear magnetic resonance spectroscopic study of metabolites in the cerebrospinal fluid of patients with cervical myelopathy and lumbar radiculopathy. Eur Spine J 19(8):1363–1368

    Article  PubMed  Google Scholar 

  13. Locasale JW, Melman T, Song S, Yang X, Swanson KD, Cantley LC, Wong ET, Asara JM (2012) Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Mol Cell Proteomics 11(6):M111 014688

    PubMed  Google Scholar 

  14. Sinclair AJ, Viant MR, Ball AK, Burdon MA, Walker EA, Stewart PM, Rauz S, Young SP (2010) NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases—a diagnostic tool? NMR Biomed 23(2):123–132

    PubMed  CAS  Google Scholar 

  15. Noga MJ, Dane A, Shi S, Attali A, van Aken H, Suidgeest E, Tuinstra T, Muilwijk B, Coulier L, Luider T, Reijmers TH, Vreeken RJ, Hankemeier T (2012) Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics 8(2):253–263

    Article  PubMed  CAS  Google Scholar 

  16. Verwaest KA, Vu TN, Laukens K, Clemens LE, Nguyen HP, Van Gasse B, Martins JC, Van Der Linden A, Dommisse R (2011) (1)H NMR based metabolomics of CSF and blood serum: a metabolic profile for a transgenic rat model of Huntington disease. Biochim Biophys Acta 1812(11):1371–1379

    Article  PubMed  CAS  Google Scholar 

  17. Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK (2003) Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr 133(10):3215–3221

    PubMed  CAS  Google Scholar 

  18. Rao R, Tkac I, Schmidt AT, Georgieff MK (2011) Fetal and neonatal iron deficiency causes volume loss and alters the neurochemical profile of the adult rat hippocampus. Nutr Neurosci 14(2):59–65

    Article  PubMed  CAS  Google Scholar 

  19. Carlson ES, Fretham SJB, Unger E, O’Connor M, Petryk A, Schallert T, Rao R, Tkac I, Georgieff MK (2010) Hippocampus specific iron deficiency alters competition and cooperation between developing memory systems. J Neurodev Disord 2:133–143

    Article  PubMed  Google Scholar 

  20. Ward KL, Tkac I, Jing Y, Felt B, Beard J, Connor J, Schallert T, Georgieff MK, Rao R (2007) Gestational and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young rats. J Nutr 137(4):1043–1049

    PubMed  CAS  Google Scholar 

  21. Rao R, Tkac I, Unger EL, Ennis K, Hurst A, Schallert T, Connor J, Felt B, Georgieff MK (2012) The iron supplementation dose for perinatal iron deficiency differentially alters the neurochemistry of frontal cortex and hippocampus in adult rats Pediatr Res. doi:10.1038/pr.2012.143

  22. Lubach GR, Coe CL (2006) Preconception maternal iron status is a risk factor for iron deficiency in infant rhesus monkeys (Macaca mulatta). J Nutr 136(9):2345–2349

    PubMed  CAS  Google Scholar 

  23. Coe CL, Lubach GR, Busbridge M, Chapman R (2012) Optimal iron fortification of maternal diet during pregnancy and nursing for investigating and preventing iron deficiency in young rhesus monkey. Res Vet Sci. doi:10.1016/j.rvsc.2012.11.017

  24. Thorsdottir I, Gunnarsson BS, Atladottir H, Michaelsen KF, Palsson G (2003) Iron status at 12 months of age—effects of body size, growth and diet in a population with high birth weight. Eur J Clin Nutr 57(4):505–513

    Article  PubMed  CAS  Google Scholar 

  25. Georgieff MK, Wewerka SW, Nelson CA, Deregnier RA (2002) Iron status at 9 months of infants with low iron stores at birth. J Pediatr 141(3):405–409

    Article  PubMed  CAS  Google Scholar 

  26. Geguchadze RN, Coe CL, Lubach GR, Clardy TW, Beard JL, Connor JR (2008) CSF proteomic analysis reveals persistent iron deficiency-induced alterations in non-human primate infants. J Neurochem 105(1):127–136

    Article  PubMed  CAS  Google Scholar 

  27. Coe CL, Lubach GR, Bianco L, Beard JL (2009) A history of iron deficiency anemia during infancy alters brain monoamine activity later in juvenile monkeys. Dev Psychobiol 51(3):301–309

    Article  PubMed  CAS  Google Scholar 

  28. Patton SM, Coe CL, Lubach GR, Connor JR (2012) Quantitative proteomic analyses of cerebrospinal fluid using iTRAQ in a primate model of iron deficiency anemia. Dev Neurosci 34:354–365

    Article  PubMed  CAS  Google Scholar 

  29. Bicknese EJ, George JW, Hird DW, Paul-Murphy J, Anderson JA, Roberts JR (1993) Prevalence and risk factors for iron deficiency anemia in weanling rhesus macaques. Lab Anim Sci 43(5):434–438

    PubMed  CAS  Google Scholar 

  30. Kreite MF, Champoux M, Suomi S (1995) Development of iron deficiency anemia in infant rhesus monkeys. Lab Animal Sci 45:15–21

    Google Scholar 

  31. Wevers RA, Engelke U, Wendel U, de Jong JG, Gabreels FJ, Heerschap A (1995) Standardized method for high-resolution 1H-NMR of cerebrospinal fluid. Clin Chem 41(5):744–751

    PubMed  CAS  Google Scholar 

  32. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679

    Article  PubMed  CAS  Google Scholar 

  33. Oz G, Tkac I, Charnas LR, Choi IY, Bjoraker KJ, Shapiro EG, Gruetter R (2005) Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology 64(3):434–441

    Article  PubMed  CAS  Google Scholar 

  34. Henry PG, Oz G, Provencher S, Gruetter R (2003) Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel. NMR Biomed 16(6–7):400–412

    Article  PubMed  CAS  Google Scholar 

  35. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13(3):129–153

    Article  PubMed  CAS  Google Scholar 

  36. Baker RD, Greer FR (2010) Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics 126(5):1040–1050

    Article  PubMed  Google Scholar 

  37. Rao R, Tkac I, Townsend EL, Ennis K, Gruetter R, Georgieff MK (2007) Perinatal iron deficiency predisposes the developing rat hippocampus to greater injury from mild to moderate hypoxia-ischemia. J Cereb Blood Flow Metab 27(4):729–740

    Article  PubMed  CAS  Google Scholar 

  38. Carlson ES, Tkac I, Magid R, O’Connor MB, Andrews NC, Schallert T, Gunshin H, Georgieff MK, Petryk A (2009) Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr 139(4):672–679

    Article  PubMed  CAS  Google Scholar 

  39. deUngria M, Rao R, Wobken JD, Luciana M, Nelson CA, Georgieff MK (2000) Perinatal iron deficiency decreases cytochrome c oxidase (CytOx) activity in selected regions of neonatal rat brain. Pediatr Res 48(2):169–176

    Article  PubMed  CAS  Google Scholar 

  40. Vigani G (2012) Does a similar metabolic reprogramming occur in fe-deficient plant cells and animal tumor cells? Front Plant Sci 3:47

    Article  PubMed  Google Scholar 

  41. Rellan-Alvarez R, Andaluz S, Rodriguez-Celma J, Wohlgemuth G, Zocchi G, Alvarez-Fernandez A, Fiehn O, Lopez-Millan AF, Abadia J (2010) Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply. BMC Plant Biol 10:120

    Article  PubMed  Google Scholar 

  42. Henderson SA, Dallman PR, Brooks GA (1986) Glucose turnover and oxidation are increased in the iron-deficient anemic rat. Am J Physiol 250(4 Pt 1):E414–E421

    PubMed  CAS  Google Scholar 

  43. Brooks GA, Henderson SA, Dallman PR (1987) Increased glucose dependence in resting, iron-deficient rats. Am J Physiol 253(4 Pt 1):E461–E466

    PubMed  CAS  Google Scholar 

  44. Oexle H, Gnaiger E, Weiss G (1999) Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation. Biochim Biophys Acta 1413(3):99–107

    Article  PubMed  CAS  Google Scholar 

  45. Taneja V, Mishra K, Agarwal KN (1986) Effect of early iron deficiency in rat on the gamma-aminobutyric acid shunt in brain. J Neurochem 46:1670–1674

    Article  PubMed  CAS  Google Scholar 

  46. Tanaka M, Kariya F, Kaihatsu K, Nakamura K, Asakura T, Kuroda Y, Ohira Y (1995) Effects of chronic iron deficiency anemia on brain metabolism. Jpn J Physiol 45:257–263

    Article  PubMed  CAS  Google Scholar 

  47. Mackler B, Person R, Miller LR, Inamdar AR, FInch CA (1978) Iron deficiency in the rat: biochemical studies of brain metabolism. Pediat Res 12:217–220

    Article  PubMed  CAS  Google Scholar 

  48. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Nat Acad Sci 95:316–321

    Article  PubMed  CAS  Google Scholar 

  49. Ohira Y, Chen CS, Hegenauer J, Saltman P (1983) Adaptations of lactate metabolism in iron-deficient rats. Proc Soc Exp Biol Med 173(2):213–216

    PubMed  CAS  Google Scholar 

  50. Ben-Shachar D, Yehuda S, Finberg JP, Spanier I, Youdim MB (1988) Selective alteration in blood-brain barrier and insulin transport in iron-deficient rats. J Neurochem 50(5):1434–1437

    Article  PubMed  CAS  Google Scholar 

  51. Burdo JR, Connor JR (2003) Brain iron uptake and homeostatic mechanisms: an overview. Biometals 16(1):63–75

    Article  PubMed  CAS  Google Scholar 

  52. van Ommen B (2004) Nutrigenomics: exploiting systems biology in the nutrition and health arenas. Nutrition 20(1):4–8

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by awards from the National Institute of Health/National Institute of Child Health and Development (R01 HD057064, P01 HD39386) and a Grand Challenges Explorations award from the Bill and Melinda Gates Foundation (Opp1046203). We are grateful to Dr. Stephen Provencher for assistance with LC Model analysis of CSF spectra.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, R., Ennis, K., Oz, G. et al. Metabolomic Analysis of Cerebrospinal Fluid Indicates Iron Deficiency Compromises Cerebral Energy Metabolism in the Infant Monkey. Neurochem Res 38, 573–580 (2013). https://doi.org/10.1007/s11064-012-0950-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0950-7

Keywords

Navigation