Skip to main content

Advertisement

Log in

Neuroprotective Effect of Decalepis hamiltonii in Paraquat-Induced Neurotoxicity in Drosophila melanogaster: Biochemical and Behavioral Evidences

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In this paper, we have demonstrated for the first time, the antioxidant and neuroprotective effects of Decalepis hamiltonii (Dh) root extract against paraquat (PQ)-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Exposure of adult D. melanogaster (Oregon K) to PQ induced oxidative stress as evidenced by glutathione depletion, lipid peroxidation and enhanced activities of antioxidant enzymes such as catalase, superoxide dismutase as well as elevated levels of acetylcholine esterase. Pretreatment of flies by feeding with Dh extract (0.1, 0.5 %) for 14 days boosted the activities of antioxidant enzymes and prevented the PQ-induced oxidative stress. Dietary feeding of Dh extract prior to PQ exposure showed a lower incidence of mortality and enhanced motor activities of flies in a negative geotaxis assay; both suggesting the neuroprotective potential of Dh. Based on the results, we contemplate that the roots of Dh might prevent and ameliorate the human diseases caused by oxidative stress. The neuroprotective action of Dh can be attributed to the antioxidant constituents while the precise mechanism of its action needs further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ames BN (1989) Endogenous oxidative DNA damage, aging, and cancer. Free Radic Res 7:121–128

    Article  CAS  Google Scholar 

  2. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S38

    Article  PubMed  CAS  Google Scholar 

  3. Sau D, De Biasi S, Vitellaro-Zuccarello L, Riso P, Guarnieri S et al (2007) Mutation of SOD1 in ALS: a gain of a loss of function. Hum Mol Genet 16:1604–1618

    Article  PubMed  CAS  Google Scholar 

  4. Trushina E, McMurray C (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233–1248

    Article  PubMed  CAS  Google Scholar 

  5. Chaudhuri A, Bowling K, Funderburk C, Lawal H, Inamdar A et al (2007) Interaction of genetic and environmental factors in a Drosophila parkinsonism model. J Neurosci 27:2457–2467

    Article  Google Scholar 

  6. Kuter K, Śmiałowska M, Wierońska J, Zięba B, Wardas J et al (2007) Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats. Brain Res 1155:196–207

    Article  PubMed  CAS  Google Scholar 

  7. Prasad K, Tarasewicz E, Mathew J, Strickland PAO, Buckley B et al (2009) Toxicokinetics and toxicodynamics of paraquat accumulation in mouse brain. Exp Neurol 215:358–367

    Article  PubMed  CAS  Google Scholar 

  8. Suntres ZE (2002) Role of antioxidants in paraquat toxicity. Toxicology 180:65–77

    Article  PubMed  CAS  Google Scholar 

  9. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  10. Shimizu K, Matsubara K, Ohtaki K, Fujimaru S, Saito O et al (2003) Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res 976:243–252

    Article  PubMed  CAS  Google Scholar 

  11. Yumino K, Kawakami I, Tamura M, Hayashi T, Nakamura M (2002) Paraquat-and diquat-induced oxygen radical generation and lipid peroxidation in rat brain microsomes. J Biochem 131:565–570

    Article  PubMed  CAS  Google Scholar 

  12. Bilen J, Bonini NM (2005) Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39:153–171

    Article  PubMed  CAS  Google Scholar 

  13. Dinis-Oliveira R, Remiao F, Carmo H, Duarte J, Navarro AS et al (2006) Paraquat exposure as an etiological factor of Parkinson’s disease. Neurotoxicology 27:1110–1122

    Article  PubMed  CAS  Google Scholar 

  14. Hosamani R, Ramesh SR (2010) Attenuation of rotenone-induced mitochondrial oxidative damage and neurotoxicity in Drosophila melanogaster supplemented with creatine. Neurochem Res 35:1402–1412

    Article  PubMed  CAS  Google Scholar 

  15. Inamdar AA, Chaudhuri A, O’Donnell J (2012) The protective effect of minocycline in a paraquat-induced Parkinson’s disease model in Drosophila is modified in altered genetic backgrounds. Parkinson’s Dis 2012:938528

    Google Scholar 

  16. Halliwell B, Rafter J, Jenner A (2005) Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? Am J Clin Nutr 81:268S–276S

    PubMed  CAS  Google Scholar 

  17. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202

    Article  PubMed  CAS  Google Scholar 

  18. Nayar R, Shetty JKP, Mary Z, Yoganarasimhan S (1978) Pharmacognostical studies on the root of Decalepis hamiltonii Wt. and Arn., and comparison with Hemidesmus indicus (L.) R. Br Proc Plant Sci 87:37–48

    Google Scholar 

  19. Harish R, Divakar S, Srivastava A, Shivanandappa T (2005) Isolation of antioxidant compounds from the methanolic extract of the roots of Decalepis hamiltonii (Wight and Arn.). J Agric Food Chem 53:7709–7714

    Article  PubMed  CAS  Google Scholar 

  20. Srivastava A, Harish R, Shivanandappa T (2006) Novel antioxidant compounds from the aqueous extract of the roots of Decalepis hamiltonii (Wight and Arn.) and their inhibitory effect on low-density lipoprotein oxidation. J Agric Food Chem 54:790–795

    Article  PubMed  CAS  Google Scholar 

  21. Srivastava A, Shivanandappa T (2011) Antioxidant and cytoprotective properties of 2-(hydroxymethyl)-3-methoxybenzaldehyde. Food Chem 128:458–464

    Article  CAS  Google Scholar 

  22. Srivastava A, Harish SR, Shivanandappa T (2006) Antioxidant activity of the roots of Decalepis hamiltonii (Wight & Arn.). LWT-Food Sci Technol 39:1059–1065

    Article  CAS  Google Scholar 

  23. Srivastava A, Shivanandappa T (2010) Neuroprotective effect of Decalepis hamiltonii roots against ethanol-induced oxidative stress. Food Chem 119:626–629

    Article  CAS  Google Scholar 

  24. Srivastava A, Shivanandappa T (2006) Hepatoprotective effect of the aqueous extract of the roots of Decalepis hamiltonii against ethanol-induced oxidative stress in rats. Hepatol Res 35:267–275

    Article  PubMed  Google Scholar 

  25. Tanimura T, Isono K, Takamura T, Shimada I (1982) Genetic dimorphism in the taste sensitivity to trehalose in Drosophila melanogaster. J Comp Physiol 147:433–437

    Article  Google Scholar 

  26. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  PubMed  CAS  Google Scholar 

  27. Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  28. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  PubMed  CAS  Google Scholar 

  29. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  30. Hissin PJ (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  PubMed  CAS  Google Scholar 

  31. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  33. Wilson DM, Sofinowski TM, McNeill DR (2003) Repair mechanisms for oxidative DNA damage. Front Biosci 8:d963–d981

    Article  PubMed  CAS  Google Scholar 

  34. Ballard PA, Tetrud JW, Langston JW (1985) Permanent human parkinsonism due to 1-methy 1-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP) Seven cases. Neurology 35:949–956

    Article  PubMed  CAS  Google Scholar 

  35. Arking R, Buck S, Berrios A, Dwyer S, Baker GT III (1991) Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev Genet 12:362–370

    Article  PubMed  CAS  Google Scholar 

  36. Mohammadi-Bardbori A, Ghazi-Khansari M (2008) Alternative electron acceptors: proposed mechanism of paraquat mitochondrial toxicity. Environ Toxicol Pharm 26:1–5

    Article  CAS  Google Scholar 

  37. Berry C, La Vecchia C, Nicotera P (2010) Paraquat and Parkinson’s disease. Cell Death Differ 17:1115–1125

    Article  PubMed  CAS  Google Scholar 

  38. Pienaar IS, Götz J, Feany MB (2010) Parkinson’s disease: insights from non-traditional model organisms. Prog Neurobiol 92:558–571

    Article  PubMed  CAS  Google Scholar 

  39. Park JH, Jung JW, Ahn YJ, Kwon HW (2012) Neuroprotective properties of phytochemicals against paraquat-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Pestic Biochem Phys 104:118–125

    Google Scholar 

  40. Hosamani R (2009) Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicology 30:977–985

    Article  PubMed  CAS  Google Scholar 

  41. Li YM, Chan HYE, Huang Y, Chen ZY (2007) Green tea catechins upregulate superoxide dismutase and catalase in fruit flies. Mol Nutr Food Res 51:546–554

    Article  PubMed  CAS  Google Scholar 

  42. Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY, et al. (2011) Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp Gerontol 47:170–178

    Google Scholar 

  43. Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Corrêa M et al (2009) Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol 610:42–48

    Article  PubMed  CAS  Google Scholar 

  44. Bernhardi R, Alarcon R, Mezzano D, Fuentes P, Inestrosa NC (2005) Blood cells cholinesterase activity in early stage Alzheimer’s disease and vascular dementia. Dement Geriatr Cogn Disord 19:204–212

    Article  Google Scholar 

  45. Jin Q, He H, Shi Y, Lu H, Zhang X (2004) Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells. Acta Pharmacol Sin 25:1013–1021

    PubMed  CAS  Google Scholar 

  46. Elufioye TO, Obuotor EM, Sennuga AT, Agbedahunsi JM, Adesanya SA (2010) Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some selected Nigerian medicinal plants. Rev Bras Farm 20:472–477

    Article  Google Scholar 

  47. Pillay R, Maharaj DS, Daniel S, Daya S (2003) Acetylcholine reduces cyanide-induced superoxide anion generation and lipid peroxidation in rat brain homogenates. Prog Neuro-Psychopharmacol Biol Psych 27:61–64

    Article  CAS  Google Scholar 

  48. Melo JB, Agostinho P, Oliveira CR (2003) Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res 45:117–127

    Article  PubMed  CAS  Google Scholar 

  49. Girish C, Muralidhara (2012) Propensity of Selaginella delicatula aqueous extract to offset rotenone-induced oxidative dysfunctions and neurotoxicity in Drosophila melanogaster: Implications for Parkinson’s disease. Neurotoxicology 33:444–456

    Article  PubMed  CAS  Google Scholar 

  50. Prasad SN, Muralidhara (2012) Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster: Its amelioration with spice active enrichment: relevance to neuropathy. Neurotoxicology 33:1254–1264

    Article  PubMed  CAS  Google Scholar 

  51. Haddadi M, Jahromi SR, Shivanandappa T, Ramesh S (2013) Decalepis hamiltonii root extract attenuates the age-related decline in the cognitive function in Drosophila melanogaster. Behav Brain Res 249:8–14

    Article  PubMed  CAS  Google Scholar 

  52. Srivastava A, Jagan Mohan Rao L, Shivanandappa T (2012) 2, 4, 8-trihydroxybicyclo [3.2. 1] octan-3-one scavenges free radicals and protects against xenobiotic-induced cytotoxicity. Free Radic Res 46:320–328

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Chairman, Department of Studies in Zoology, University of Mysore, for the facilities.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahromi, S.R., Haddadi, M., Shivanandappa, T. et al. Neuroprotective Effect of Decalepis hamiltonii in Paraquat-Induced Neurotoxicity in Drosophila melanogaster: Biochemical and Behavioral Evidences. Neurochem Res 38, 2616–2624 (2013). https://doi.org/10.1007/s11064-013-1179-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1179-9

Keywords

Navigation