Skip to main content
Log in

Down-Regulation of miRNA-30a Alleviates Cerebral Ischemic Injury Through Enhancing Beclin 1-Mediated Autophagy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The understanding of molecular mechanism underlying ischemia/reperfusion-induced neuronal death and neurological dysfunction may provide therapeutic targets for ischemic stroke. The up-regulated miRNA-30a among our previous identified 19 MicroRNAs (miRNAs) in mouse brain after 6 h middle cerebral artery occlusion (MCAO) could negatively regulate Beclin 1 messenger RNA (mRNA) resulting in decreased autophagic activity in tumor cells and cardiomyocytes, but its role in ischemic stroke is unclear. In this study, the effects of miRNA-30a on ischemic injury in N2A cells and cultured cortical neurons after oxygen glucose deprivation (OGD), and mouse brain with MCAO-induced ischemic stroke were evaluated. The results showed that miRNA-30a expression levels were up regulated in the brain of mice after 6 h MCAO without reperfusion, but significantly down regulated in the peri-infarct region of mice with 1 h MCAO/24 h reperfusion and in N2A cells after 1 h OGD/6–48 h reoxygenation. Both the conversion ratio of microtubule-associated protein 1 light chain 3 (LC3)-II/LC3-I and Beclin 1 protein level increased in N2A cells and cultured cortical neurons following 1 h OGD/24 h reoxygenation. The down-regulated miRNA-30a could attenuate 1 h OGD/24 h reoxygenation-induced ischemic injury in N2A cells and cultured cortical neurons through enhancing Beclin 1-mediated autophagy, as miRNA-30a recognized the 3′-untranslated region of beclin 1 mRNA to negatively regulate Beclin 1-protein level via promoting beclin 1 messenger RNA (mRNA) degradation, and Beclin 1 siRNA abolished anti-miR-30a-induced neuroprotection in 1 h OGD/24 h reoxygenation treated N2A cells. In addition, anti-miR-30a attenuated the neural cell loss and improved behavioral outcome of mice with ischemic stroke. These results suggested that down-regulation of miRNA-30a alleviates ischemic injury through enhancing beclin 1-mediated autophagy, providing a potential therapeutic target for ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marsh JD, Keyrouz SG (2010) Stroke prevention and treatment. J Am Coll Cardiol 56:683–691

    Article  PubMed  Google Scholar 

  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F (2010) microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther 125:92–104

    Article  CAS  PubMed  Google Scholar 

  4. Huang Y, Shen XJ, Zou Q, Zhao QL (2010) Biological functions of microRNAs. Bioorg Khim 36:747–752

    PubMed  Google Scholar 

  5. Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32:189–197

    Article  CAS  PubMed  Google Scholar 

  6. Frankel LB, Wen J, Lees M, Hoyer-Hansen M, Farkas T, Krogh A, Jaattela M, Lund AH (2011) microRNA-101 is a potent inhibitor of autophagy. EMBO J 30:4628–4641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chang Y, Yan W, He X, Zhang L, Li C, Huang H, Nace G, Geller DA, Lin J, Tsung A (2012) miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology 143:177–187

    Article  CAS  PubMed  Google Scholar 

  8. Korkmaz G, Le SC, Tekirdag KA, Agami R, Gozuacik D (2012) miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy 8:165–176

    Article  CAS  PubMed  Google Scholar 

  9. Kovaleva V, Mora R, Park YJ, Plass C, Chiramel AI, Bartenschlager R, Dohner H, Stilgenbauer S, Pscherer A, Lichter P, Seiffert M (2012) miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells. Cancer Res 72:1763–1772

    Article  CAS  PubMed  Google Scholar 

  10. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cao Y, Klionsky DJ (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 17:839–849

    Article  CAS  PubMed  Google Scholar 

  12. Wang J (2008) Beclin 1 bridges autophagy, apoptosis and differentiation. Autophagy 4:947–948

    Article  CAS  PubMed  Google Scholar 

  13. Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics 43:521–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920

    Article  CAS  PubMed  Google Scholar 

  15. Dharap A, Bowen K, Place R, Li LC, Vemuganti R (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29:675–687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tan JR, Koo YX, Kaur P, Liu F, Armugam A, Wong PT, Jeyaseelan K (2011) microRNAs in stroke pathogenesis. Curr Mol Med 11:76–92

    Article  CAS  PubMed  Google Scholar 

  17. Liu C, Peng Z, Zhang N, Yu L, Han S, Li D, Li J (2012) Identification of differentially expressed microRNAs and their PKC-isoform specific gene network prediction during hypoxic pre-conditioning and focal cerebral ischemia of mice. J Neurochem 120:830–841

    Article  CAS  PubMed  Google Scholar 

  18. Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, Liu CG, Yang JM (2009) Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5:816–823

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Zou Z, Wu L, Ding H, Wang Y, Zhang Y, Chen X, Chen X, Zhang CY, Zhang Q, Zen K (2012) MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy. J Biol Chem 287:4148–4156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yu Y, Yang L, Zhao M, Zhu S, Kang R, Vernon P, Tang D, Cao L (2012) Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia 26:1752–1760

    Article  CAS  PubMed  Google Scholar 

  21. Pan W, Zhong Y, Cheng C, Liu B, Wang L, Li A, Xiong L, Liu S (2013) MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS ONE 8:e53950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yin X, Peng C, Ning W, Li C, Ren Z, Zhang J, Gao H, Zhao K (2013) miR-30a downregulation aggravates pressure overload-induced cardiomyocyte hypertrophy. Mol Cell Biochem 379:1–6

    Article  CAS  PubMed  Google Scholar 

  23. Bu X, Zhang N, Yang X, Liu Y, Du J, Liang J, Xu Q, Li J (2011) Proteomic analysis of cPKCbetaII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice. J Neurochem 117:346–356

    Article  CAS  PubMed  Google Scholar 

  24. Feng S, Li D, Li Y, Yang X, Han S, Li J (2013) Insight into hypoxic preconditioning and ischemic injury through determination of nPKCepsilon-interacting proteins in mouse brain. Neurochem Int 63:69–79

    Article  CAS  PubMed  Google Scholar 

  25. Zhang N, Yin Y, Han S, Jiang J, Yang W, Bu X, Li J (2011) Hypoxic preconditioning induced neuroprotection against cerebral ischemic injuries and its cPKCgamma-mediated molecular mechanism. Neurochem Int 58:684–692

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez R, Santiago-Mejia J, Gomez C, San-Juan ER (2005) A simplified procedure for the quantitative measurement of neurological deficits after forebrain ischemia in mice. J Neurosci Methods 147:22–28

    Article  PubMed  Google Scholar 

  27. Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, Lu W, Ji X, Zhou QG, Zhu DY (2010) Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med 16:1439–1443

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Qu Y, Zu P, Han S, Gao G, Xu Q, Fang L (2006) Increased isoform-specific membrane translocation of conventional and novel protein kinase C in human neuroblastoma SH-SY5Y cells following prolonged hypoxia. Brain Res 1093:25–32

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Niu C, Han S, Zu P, Li H, Xu Q, Fang L (2005) Identification of protein kinase C isoforms involved in cerebral hypoxic preconditioning of mice. Brain Res 1060:62–72

    Article  CAS  PubMed  Google Scholar 

  30. Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14:432–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hebert SS, De SB (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199–206

    Article  CAS  PubMed  Google Scholar 

  32. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, Turner RJ, Jickling G, Sharp FR (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30:92–101

    Article  PubMed Central  PubMed  Google Scholar 

  33. Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, Kim RY, Saria MG, Pastorino S, Kesari S, Krichevsky AM (2012) MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro Oncol 14:689–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zhong M, Bian Z, Wu Z (2013) miR-30a suppresses cell migration and invasion through downregulation of PIK3CD in colorectal carcinoma. Cell Physiol Biochem 31:209–218

    Article  CAS  PubMed  Google Scholar 

  35. Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J, Papotti M, Allgayer H (2012) MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer 130:2044–2053

    Article  CAS  PubMed  Google Scholar 

  36. Cheng CW, Wang HW, Chang CW, Chu HW, Chen CY, Yu JC, Chao JI, Liu HF, Ding SL, Shen CY (2012) MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat 134:1081–1093

    Article  CAS  PubMed  Google Scholar 

  37. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17:3030–3042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Croce N, Gelfo F, Ciotti MT, Federici G, Caltagirone C, Bernardini S, Angelucci F (2013) NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: a possible role in neuroprotection? Mol Cell Biochem 376:189–195

    Article  CAS  PubMed  Google Scholar 

  39. Long G, Wang F, Duan Q, Yang S, Chen F, Gong W, Yang X, Wang Y, Chen C, Wang DW (2012) Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS ONE 7:e50926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zheng YQ, Liu JX, Li XZ, Xu L, Xu YG (2009) RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats. Acta Pharmacol Sin 30:919–927

    Article  CAS  PubMed  Google Scholar 

  41. Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18:250–260

    Article  CAS  PubMed  Google Scholar 

  42. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769

    Article  CAS  PubMed  Google Scholar 

  43. Papadakis M, Hadley G, Xilouri M, Hoyte LC, Nagel S, McMenamin MM, Tsaknakis G, Watt SM, Drakesmith CW, Chen R, Wood MJ, Zhao Z, Kessler B, Vekrellis K, Buchan AM (2013) Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy. Nat Med 19:351–357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 32:329–339

    Article  CAS  PubMed  Google Scholar 

  45. Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY (2012) Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy 8:77–87

    Article  CAS  PubMed  Google Scholar 

  46. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tanida I (2011) Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal 14:2201–2214

    Article  CAS  PubMed  Google Scholar 

  48. Ge W, Ren J (2012) mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism. J Cell Mol Med 16:616–626

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (Grant No. 31171147 and 81301015), Beijing Natural Science Foundation (Grant No. 7132070 and 7141001), and the “973” Pre-program (Grant No. 2011CB512109).

Conflict of interest

The authors confirm that there are no conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfa Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Liang, J., Li, Y. et al. Down-Regulation of miRNA-30a Alleviates Cerebral Ischemic Injury Through Enhancing Beclin 1-Mediated Autophagy. Neurochem Res 39, 1279–1291 (2014). https://doi.org/10.1007/s11064-014-1310-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1310-6

Keywords

Navigation