Skip to main content

Advertisement

Log in

Actin Filament Reorganization in Astrocyte Networks is a Key Functional Step in Neuroinflammation Resulting in Persistent Pain: Novel Findings on Network Restoration

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In recent years, the importance of glial cell activation in the generation and maintenance of long-term pain has been investigated. One novel mechanism underlying long-lasting pain is injury-induced inflammation in the periphery, followed by microglial activation in the dorsal horn of the spinal cord, which results in local neuroinflammation. An increase in neuronal excitability may follow, with intense signaling along the pain tracts to the thalamus and the parietal cortex along with other cortical regions for the identification and recognition of the injury. If the local neuroinflammation develops into a pathological state, then the astrocytes become activated. Previous studies in which lipopolysaccharide (LPS) was used to induce inflammation have shown that in a dysfunctional astrocyte network, the actin cytoskeleton is reorganized from the normally occurring F-actin stress fibers into the more diffusible, disorganized, ring-form globular G-actin. In addition, Ca2+ signaling systems are altered, Na+- and glutamate transporters are downregulated, and pro-inflammatory cytokines, particularly IL-1β, are released in dysfunctional astrocyte networks. In a series of experiments, we have demonstrated that these LPS-induced changes in astrocyte function can be restored by stimulation of Gi/o and inhibition of Gs with a combination of a μ-receptor agonist and ultralow concentrations of a μ-receptor antagonist and by inhibition of cytokine release, particularly IL-1β, by the antiepileptic drug levetiracetam. These findings could be of clinical significance and indicate a novel treatment for long-term pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saadé NE, Jabbur SJ (2008) Nociceptive behaviour in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol 86:22–47

    Article  PubMed  Google Scholar 

  2. McMahon SB, Malcangio M (2009) Current challenges in glia-pain biology. Neuron 64:46–54

    Article  CAS  PubMed  Google Scholar 

  3. Vallejo R, Tilley DM, Vogel L, Benyamin R (2010) The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract 10:167–184

    Article  PubMed  Google Scholar 

  4. Huber JD, Witt KA, Hom S, Egleton RD, Mark S, Davis TP (2001) Inflammatory pain alters blood brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 280:H1241–H1248

    CAS  PubMed  Google Scholar 

  5. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  6. Sharma HS, Johanson CE (2007) Blood-cerebrospinal fluid barrier in hyperthermia. Prog Brain Res 162:459–478

    Article  CAS  PubMed  Google Scholar 

  7. Hansson E, Rönnbäck L (2003) Glial neuronal signalling in the central nervous system. FASEB J 17:341–348

    Article  CAS  PubMed  Google Scholar 

  8. Kielian T (2006) Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83:711–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Forshammar J, Block L, Lundborg C, Biber B, Hansson E (2011) Naloxone and ouabain in ultra-low concentrations restore Na+/K+-ATPase and cytoskeleton in lipopolysaccharide-treated astrocytes. J Biol Chem 286:31586–31597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hutchinson MR, Zhang Y, Brown K, Coats BD, Shridhar M, Sholar PW, Patel SJ, Crysdale NY, Harrison JA, Maier SF, Rice KC, Watkins LR (2008) Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur J Neurosci 28:20–29

    Article  PubMed Central  PubMed  Google Scholar 

  11. Block L, Forshammar J, Lundborg C, Biber B, Hansson E (2012) Naloxone in ultra-low concentration restores endomorphin-1—evoked Ca2+ signalling in inflammation pre-treated astrocytes. Neuroscience 205:1–9

    Article  CAS  PubMed  Google Scholar 

  12. Hansson E (2006) Could chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol 187:321–327

    Article  CAS  Google Scholar 

  13. Hansson E (2010) Long-term pain, neuroinflammation and glial activation. Scand J Pain 1:67–72

    Article  Google Scholar 

  14. Gegelashvili G, Schousboe A (1997) High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52:6–15

    CAS  PubMed  Google Scholar 

  15. Hansson E, Westerlund A, Björklund U, Olsson T (2008) μ-Opioid agonists restore intracellular Ca2+ responses in inflammatory activated astrocytes co-cultured with brain endothelial cells. Neuroscience 155:1237–1249

    Article  CAS  PubMed  Google Scholar 

  16. Delbro D, Westerlund A, Björklund U, Hansson E (2009) Inflammatory mediators have a regulating influence on nicotine receptors on astrocytes in the CNS. Neuroscience 159:770–779

    Article  CAS  PubMed  Google Scholar 

  17. Lundborg C, Hahn-Zoric M, Biber B, Hansson E (2010) Glial cell line-derived neurotrophic factor is increased in cerebrospinal fluid but decreased in blood during long-term pain. J Neuroimmunol 220:108–113

    Article  CAS  PubMed  Google Scholar 

  18. Nakamura Y (2002) Regulating factors for microglial activation. Biol Pharm Bull 25:945–953

    Article  CAS  PubMed  Google Scholar 

  19. Xu M, Iwasaki T, Shimokawa N, Sajdel-Sulkowska EM, Koibuchi N (2013) The effect of low dose lipopolysaccharide on thyroid hormone-regulated actin cytoskeleton modulation and type 2 iodothyronine deiodinase activity in astrocytes. Endocrine J. doi:10.1507/endocrj. EJ13-0294

  20. Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. GLIA 59:242–255

    Article  PubMed  Google Scholar 

  21. Kleveta G, Borzecka K, Zdioruk M, Czerkies M, Kuberczyk H, Sybirna N, Sobota A, Kwiatkowska K (2012) LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility. J Cell Biochem 113:80–92

    Article  CAS  PubMed  Google Scholar 

  22. Arraes SMA, Freitas MS, da Silva SV, de Paula Neto HA, Alves-Filho JC, Martins MA, Basile-Filho A, Tavares-Murta BM, Barja-Fidalgo C, Cunha FQ (2006) Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood 108:2906–2913

    Article  CAS  PubMed  Google Scholar 

  23. Du L, Zhou J, Zhang J, Yan M, Gong L, Liu X, Chen M, Tao K, Luo N, Liu J (2012) Actin filament reorganization is a key step in lung inflammation induced by systemic inflammatory response syndrome. Am J Resp Cell Molec Biol 47:597–603

    Article  CAS  Google Scholar 

  24. Oda T, Iwasa M, Aihara T, Maéda Y, Narita A (2009) The nature of the globular- to fibrous-actin transition. Nature 457:441–550

    Article  CAS  PubMed  Google Scholar 

  25. Shousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. Int Rev Neurobiol 22:1–45

    Article  Google Scholar 

  26. Rose EM, Koo JCP, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na, K-ATPase. J Neurosci 29:8143–8155

    Article  CAS  PubMed  Google Scholar 

  27. Genda EN, Jackson JG, Sheldon AL, Locke SF, Greco TM, O’Donell JC, Spruce LA, Xiao R, Gou W, Putt M, Seeholzer S, Ischiropoulos H, Robinson MB (2011) Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 31:18275–18288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bauer DE, Jackson JG, Genda EN, Montoya MM, Yudkoff M, Robinson MB (2012) The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism. Neurochem Int 61:566–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Norenberg M, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  PubMed  Google Scholar 

  30. Hertz L (1979) Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmittors. Prog Neurobiol 13:277–323

    Article  CAS  PubMed  Google Scholar 

  31. Sheean RK, Lau CL, Shin YS, O’Shea RD, Beart PM (2013) Links between L-glutamate transporters, Na+/K+-ATPase and cytoskeleton in astrocytes: evidence following inhibition with rottlerin. Neuroscience 254:335–346

    Article  CAS  PubMed  Google Scholar 

  32. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. GLIA 50:427–434

    Article  PubMed  Google Scholar 

  33. Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Zhang Z, Guo H, Wang Y (2008) Na+/K+-ATPase-mediated signal transduction and Na+/K+-ATPase regulation. Fundam Clin Pharmacol 22:615–621

    Article  CAS  PubMed  Google Scholar 

  35. Mikoshiba K (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446

    Article  CAS  PubMed  Google Scholar 

  36. Cotrina ML, Lin JH-C, Nedergaard M (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signalling. J Neurosci 18:8794–8804

    CAS  PubMed  Google Scholar 

  37. Sergeeva M, Ubl JJ, Reiser G (2000) Disruption of actin cytoskeleton in cultured rat astrocytes suppresses ATP- and bradykinin-induced [Ca2+]i oscillations by reducing the coupling efficiency between Ca2+ release, capacitative Ca2+ entry, and store refilling. Neuroscience 97:765–769

    Article  CAS  PubMed  Google Scholar 

  38. Bradley SJ, Watson JM, Challiss RAJ (2009) Effects of positive allosteric modulators on single-cell oscillatory Ca2+ signalling initiated by the type 5 metabotropic glutamate receptor. Mol Pharmacol 76:1302–1313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes. Control by tumor necrosis factor-α and prostaglandins. J Biol Chem 281:30684–30696

    Article  CAS  PubMed  Google Scholar 

  41. Račkauskas M, Neverauskas V, Skeberdis VA (2010) Diversity and properties of connexin gap junction channels. Medicina 46:1–12

    PubMed  Google Scholar 

  42. Froger N, Orellana JA, Calvo C-F, Amigou E, Kozoriz MG, Naus CC, Sáez JC, Giaume C (2010) Inhibition of cytokine-induced connexin43 hemichannel activity in astrocytes is neuroprotective. Mol Cell Neurosci 45:37–46

    Article  CAS  PubMed  Google Scholar 

  43. Karpuk N, Burkovetskaya M, Fritz T, Angle A, Kielian T (2011) Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity. J Neurosci 31:414–425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Chen MJ, Kress B, Han X, Moll K, Peng W, Ji R–R, Nedergaard M (2012) Astrocyte Cx43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. GLIA 60:1660–1670

    Article  PubMed Central  PubMed  Google Scholar 

  45. Torres A, Wang F, Xu Q, Fujita T, Dobrowolski R, Willecke K, Takano T, Nedergaard M (2012) Extracellular Ca2+ acts as a mediator of communication from neurons to glia. Sci Signal 5:1–12

    Google Scholar 

  46. Retamal MA, Froger N, Palacios-Prado N, Ezan P, Sáez JC, Giaume C (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27:13781–13792

    Article  CAS  PubMed  Google Scholar 

  47. Même W, Calv C-F, Froger N, Ezan P, Amigou E, Koulakoff A, Giaume C (2006) Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by β-amyloid. FASEB J. doi:10.1096/fj.05-4297fje

    PubMed  Google Scholar 

  48. Kim J-E, Choi H-C, Song H-K, Jo S-M, Kim D-S, Choi S-Y, Kim Y-I, Kang T-C (2010) Levetiracetam inhibits interleukin-1β inflammatory responses in the hippocampus and piriform cortex of epileptic rats. Neurosci Lett 471:94–99

    Article  CAS  PubMed  Google Scholar 

  49. Smyth JW, Vogan JM, Buch PJ, Zhang S–S, Fong TS, Hong T–T, Shaw RM (2012) Actin cytoskeleton rest stops regulate anterograde traffic of connexin 43 vesicles to the plasma membrane. Circ Res 110:978–989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Theiss C, Meller K (2002) Microinjected anti-actin antibodies decrease gap junctional intercellular communication in cultured astrocytes. Exp Cell Res 281:197–204

    Article  CAS  PubMed  Google Scholar 

  51. Blanco AM, Vallés SL, Pascual M, Guerri C (2005) Involvement of TLR4/Type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol 175:6893–6899

    Article  CAS  PubMed  Google Scholar 

  52. De Rivero Vaccari JP, Dietrich WD, Keane RW (2014) Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cerebr Blood Flow Metab 34:369–375

    Article  Google Scholar 

  53. Hansson E, Rönnbäck L (2004) Altered neuronal-glial signalling in glutamatergic transmission as a unifying mechanism in chronic pain and mental fatigue. Neurochem Res 29:989–996

    Article  CAS  PubMed  Google Scholar 

  54. Watkins LR, Maier SF (2003) Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Disc 2:973–985

    Article  CAS  Google Scholar 

  55. Zhuo M, Wu G, Wu L-J (2011) Neuronal and microglial mechanisms of neuropathic pain. Mol Brain 4:1–12

    Article  Google Scholar 

  56. Fields H (2004) State-dependent opioid control of pain. Nat Rev Neurosci 5:565–575

    Article  CAS  PubMed  Google Scholar 

  57. Uhl GR, Childers S, Pasternak G (1994) An opiate-receptor gene family reunion. Trends Neurosci 17:89–93

    Article  CAS  PubMed  Google Scholar 

  58. Chen W, Marvizón JCG (2009) Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by μ-opioid receptor internalization. Neuroscience 161:157–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Vanderah TW (2010) Delta and kappa opioid receptors as suitable drug targets for pain. Clin J Pain 26:S10–S15

    Article  PubMed  Google Scholar 

  60. Connor M, Christie MD (1999) Opioid receptor signalling mechanisms. Clin Exp Pharmacol Physiol 26:493–499

    Article  CAS  PubMed  Google Scholar 

  61. Crain SM, Shen K-F (1995) Ultra-low concentrations of naloxone selectively antagonize excitatory effects of morphine on sensory neurons, thereby increasing its antinociceptive potency and attenuating tolerance/dependence during chronic cotreatment. Proc Natl Acad Sci USA 92:10540–10544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Wang H-Y, Friedman E, Olmestead MC, Burns LH (2005) Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gβγ signalling. Neuroscience 135:247–261

    Article  CAS  PubMed  Google Scholar 

  63. Womer DE, DeLapp NW, Shannon HE (1997) Intrathecal pertussis toxin produces hyperalgesia and allodynia in mice. Pain 70:223–228

    Article  CAS  PubMed  Google Scholar 

  64. Tsai R-Y, Tai Y-H, Tzeng J-I, Cherng C-H, Yeh C–C, Wong C-S (2009) Ultra-low dose naloxone restores the antinociceptive effect of morphine in pertussis toxin-treated rats by reversing the coupling of μ-opioid receptors from Gs-protein to coupling to Gi-protein. Neuroscience 164:435–443

    Article  CAS  PubMed  Google Scholar 

  65. Wang H-Y, Burns LH (2009) Naloxone’s pentapeptide binding site on filamin A blocks mu opioid receptor-Gs coupling and CREB activation of acute morphine. Plos One. www.ploseone.org

  66. Block L, Björklund U, Westerlund A, Jörneberg P, Biber B, Hansson E (2013) A new concept affecting restoration of inflammation-reactive astrocytes. Neuroscience 250:536–545

    Article  CAS  PubMed  Google Scholar 

  67. Maxwell LG, Kaufmann SC, Bitzer S, Jackson EV Jr, McGrady J, Kost-Byerly S, Kozlowski L, Rothman SK, Yaster M (2005) The effects of a small-dose naloxone infusion on opioid-induced side effects and analgesia in children and adolescents treated with intravenous patient-controlled analgesia: a double-blind, prospective, randomized, controlled study. Anesth Analg 100:953–958

    Article  CAS  PubMed  Google Scholar 

  68. Schmidt C, Höcherl K, Schweda F, Kurtz A, Bucher M (2007) Regulation of renal sodium transporters during severe inflammation. J Am Soc Nephrol 18:1072–1083

    Article  CAS  PubMed  Google Scholar 

  69. Takahashi S, Shibata M, Gotoh J, Fukuuchi Y (2000) Astroglial cell death induced by excessive influx of sodium ions. Eur J Pharmacol 408:127–135

    Article  CAS  PubMed  Google Scholar 

  70. Haghikia A, Ladage K, Hinkerohe D, Vollmar P, Heupel K, Dermietzel R, Faustmann PM (2008) Implications of anti-inflammatory properties of the anticonvulsant drug levetiracetam in astrocytes. J Neurosci Res 86:1781–1788

    Article  CAS  PubMed  Google Scholar 

  71. Stienen MN, Haghikia A, Dambach H, Thöne J, Wiemann M, Gold R, Chan A, Dermietzel R, Faustmann PM, Hinkerohe D, Prochnow N (2010) Anti-inflammatory effects of the anticonvulsant drug levetiracetam on electrophysiological properties of astroglia are mediated via TGFβ1 regulation. Br J Pharmacol 162:491–507

    Article  Google Scholar 

  72. Tchivileva IE, Nackley AG, Qian L, Wentworth S, Conrad M, Diatchenko LB (2009) Characterization of NF-κB-mediated inhibition of catechol-O-methyltransferase. Mol Pain 5:1–10

    Article  Google Scholar 

  73. Nadeau S, Filali M, Zhang J, Kerr BJ, Rivest S, Soulet D, Iwakura Y, de Rivero Vaccari JP, Keane RW, Lacroix S (2011) Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: implications for neuropathic pain. J Neurosci 31:12533–12542

    Article  CAS  PubMed  Google Scholar 

  74. Wen Y-R, Tan P-H, Cheng J-K, Liu Y-C, Ji R–R (2011) Microglia: a promising target for treating neuropathic and postoperative pain, and morphine tolerance. J Formos Med Assoc 110:487–494

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Edit Jacobson’s Foundation and the Sahlgrenska University Hospital (LUA/ALF GBG-11587), Gothenburg, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Hansson.

Additional information

Special Issue: In honor of Michael Norenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansson, E. Actin Filament Reorganization in Astrocyte Networks is a Key Functional Step in Neuroinflammation Resulting in Persistent Pain: Novel Findings on Network Restoration. Neurochem Res 40, 372–379 (2015). https://doi.org/10.1007/s11064-014-1363-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1363-6

Keywords

Navigation