Skip to main content

Advertisement

Log in

L-PGDS Mediates Vagus Nerve Stimulation-Induced Neuroprotection in a Rat Model of Ischemic Stroke by Suppressing the Apoptotic Response

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The role of lipocalin prostaglandin D2 synthase (L-PGDS) in brain ischemia has not been fully clarified to date. Vagus nerve stimulation (VNS) protects against cerebral ischemia/reperfusion (I/R) injury, but the mechanisms involved need further exploration. This study investigated the role of L-PGDS in cerebral I/R and whether this process was involved in the mechanism of VNS-mediated neuroprotection. Male Sprague–Dawley rats were pretreated with a lentiviral vector (LV) through intracerebroventricular injection, followed by middle cerebral artery occlusion (MCAO) and VNS treatment. The expression of L-PGDS in the peri-infarct cortex was examined. The localization of L-PGDS was determined using double immunofluorescence staining. Neurologic scores, infarct volume and neuronal apoptosis were evaluated at 24 h after reperfusion. The expression of apoptosis-related molecules was measured by western blot analysis. The expression of L-PGDS in the peri-infarct cortex increased at 12 h, reached a peak at 24 h after reperfusion, and lasted up to 3 days. VNS treatment further enhanced the expression of L-PGDS following ischemic stroke. L-PGDS was mainly expressed in neurons in the peri-infarct cortex. I/R rats treated with VNS showed better neurological deficit scores, reduced infarct volume, and decreased neuronal apoptosis as indicated by the decreased levels of Bax and cleaved caspase-3 as well as increased levels of Bcl-2. Strikingly, the beneficial effects of VNS were weakened after L-PGDS down-regulation. In general, our results suggest that L-PGDS is a potential mediator of VNS-induced neuroprotection against I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fu SH, Zhang HF, Yang ZB, Li TB, Liu B, Lou Z, Ma QL, Luo XJ, Peng J (2014) Alda-1 reduces Cerebral ischemia/reperfusion injury in rat through clearance of reactive aldehydes. Naunyn Schmiedebergs Arch Pharmacol 387(1):87–94

    Article  CAS  PubMed  Google Scholar 

  2. He G, Xu W, Tong L, Li S, Su S, Tan X, Li C (2016) Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury. Apoptosis 21(4):390–403

    Article  CAS  PubMed  Google Scholar 

  3. Morris GL 3rd, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C (2013) Evidence-based Guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the guideline development subcommittee of the American academy of neurology. Epilepsy Curr 13(6):297–303

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arle JE, Carlson KW, Mei L (2016) Investigation of mechanisms of vagus nerve stimulation for seizure using finite element modeling. Epilepsy Res 126:109–118

    Article  PubMed  Google Scholar 

  5. Conway CR, Sheline YI, Chibnall JT, Bucholz RD, Price JL, Gangwani S, Mintun MA (2012) Brain blood-flow change with acute vagus nerve stimulation in treatment-refractory major depressive disord-er. Brain Stimuli 5(2):163–171

    Article  Google Scholar 

  6. Chen SP, Ay I, de Morais AL, Qin T, Zheng Y, Sadeghian H, Oka F, Simon B, Eikermann-Haerter K, Ayata C (2016) Vagus nerve stimulation inhibits cortical spreading depression. Pain 157(4):797–805

    Article  PubMed  Google Scholar 

  7. Sun Z, Baker W, Hiraki T, Greenberg JH (2012) The effect of right vagus nerve stimulation on focal cerebral ischemia: an experimental study in the rat. Brain Stimuli 5(1):1–10

    Article  CAS  Google Scholar 

  8. Cai PY, Bodhit A, Derequito R, Ansari S, Abukhalil F, Thenkabail S, Ganji S, Saravanapavan P, Shekar CC, Bidari S, Waters MF, Hedna VS (2014) Vagus nerve stimulation in ischemic stroke:old wine in a new bottle. Front Neurol 5:107

    Article  PubMed  PubMed Central  Google Scholar 

  9. Neren D, Johnson MD, Legon W, Bachour SP, Ling G, Divani AA (2016) Vagus Nerve Stimulation and Other Neuromodulation Methods for Treatment of Traumatic Brain Injury. Neurocrit Care 24(2):308–319

    Article  CAS  PubMed  Google Scholar 

  10. Puledda F, Goadsby PJ (2016) Current Approaches to Neuromodulation in Primary Headaches: focus on vagal nerve and sphenopalatine ganglion stimulation. Curr Pain Headache Rep 20(7):47

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hiraki T, Baker W, Greenberg JH (2012) Effect of vagus nerve stimulation during transient focal cerebral ischemia on chronic outcome in rats. J Neurosci Res 90(4):887–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang Y, Li L, Liu B, Zhang Y, Chen Q, Li C (2014) Vagus nerve stimulation attenuates cerebral ischemia and reperfusion injury via endogenous cholinergic pathway in rat. PLoS One 9(7):e102342

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jiang Y, Li L, Tan X, Liu B, Zhang Y, Li C (2015) miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. J Neurochem 134(1):173–181

    Article  CAS  PubMed  Google Scholar 

  14. Urade Y, Kitahama K, Ohishi H, Kaneka T, Mizuno N, Hayaishi O (1993) Dominant expression of mRNA for prostaglandin D synthase in leptomeninges, choroid plexus, andoligodendrocytes of the adult rat brain. Proc Natl Acad Sci USA 90(19):9070–9074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez-Rodriguez PJ, Li Y, Martinez F, Zhang L (2014) Dexamethasone protects neonatal hypo-xic-ischemic brain injury via L-PGDS-dependent PGD2-DP1-pERK signaling pathway. PLoS One 9(12):e114470

    Article  PubMed  PubMed Central  Google Scholar 

  16. Taniike M, Mohri I, Eguchi N, Beuckmann CT, Suzuki K, Urade Y (2002) Perineuronal oligodendrocytes protect against neuronal apoptosis through the production of lipocalin-type prostaglandin D synthase in a genetic demyelinating model. J Neurosci 22(12):4885–4896

    CAS  PubMed  Google Scholar 

  17. Taniguchi H, Mohri I, Okabe-Arahori H, Kanekiyo T, Kagitani-Shimono K, Wada K, Urade Y, Nakayama M, Ozono K, Taniike M (2007) Early induction of neuronal lipocalin-type prostaglandin D synthase after hypoxic-ischemic injury in developing brains. Neurosci Lett 420(1):39–44

    Article  CAS  PubMed  Google Scholar 

  18. Fujimori K, Fukuhara A, Inui T, Allhorn M (2012) Prevention of paraquat-induced apoptosis in human neuronal SH-SY5Y cells by lipocalin-type prostaglandin D synthase. J Neurochem 120(2):279–291

    Article  CAS  PubMed  Google Scholar 

  19. Saleem S, Shah ZA, Urade Y, Doré S (2009) Lipocalin-prostaglandin D synthase is a critical beneficial factor in transient and permanent focal cerebral ischemia. Neuroscience 160(1):248–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grill M, Peskar BA, Schuligoi R, Amann R (2006) Systemic inflammation induces COX-2 mediated prostaglandin D2 biosynthesis in mice spinal cord. Neuropharmacology 50(2):165–173

    Article  CAS  PubMed  Google Scholar 

  21. Kagitani-Shimono K, Mohri I, Oda H, Ozono K, Suzuki K, Urade Y, Taniike M (2006) Lipocalin-type prostaglandin D synthase (beta-trace) is upregulated in the alphaB-crystallin-positive oligodendrocytes and astrocytes in the chronic multiple sclerosis. Neuropathol Appl Neurobiol 32(1):64–73

    Article  CAS  PubMed  Google Scholar 

  22. Kanekiyo T, Ban T, Aritake K, Huang ZL, Qu WM, Okazaki I, Mohri I, Murayama S, Ozono K, Taniike M, Goto Y, Urade Y (2007) Lipocalin-type prostaglandin D synthase/beta-trace is a major amyloid beta-chaperone in human cerebrospinal fluid. Proc Natl Acad Sci USA 104(15):6412–6417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee S, Jang E, Kim JH, Kim JH, Lee WH, Suk K (2012) Lipocalin-type prostaglandin D2 synthase protein regulates glial cell migration and morphology throughmyristoylated alanine-rich C-kinase substrate: prostaglandin D2-independent effects. J Biol Chem 287(12):9414–9428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of animproved model. Stroke 27(9):1616–1622

    Article  CAS  PubMed  Google Scholar 

  25. Goyagi T, Nishikawa T, Tobe Y (2011) Neuroprotective effects and suppression of ischemia-Induced glutamate elevation by β1-adrenoreceptor antagonists administered before transient focal ischemia in rats. J Neurosurg Anesthesiol 23(2):131–137

    Article  PubMed  Google Scholar 

  26. Ay I, Sorensen AG, Ay H (2011) Vagus nerve stimulation reduces infarct size in rat focal Cerebral ischemia: an unlikely role for cerebral blood flow. Brain Res 1392:110–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith DC, Modglin AA, Roosevelt RW, Neese SL, Jensen RA, Browning RA, Clough RW (2005) Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat. J Neurotrauma 22(12):1485–1502

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schäbitz WR, Weber J, Takano K, Sandage BW, Locke KW, Fisher M (1996) The effects of prolonged treatment with citicoline in temporary experimental focal ischemia. J Neurol Sci 138(1–2):21–25

    Article  PubMed  Google Scholar 

  29. Won S, Lee JH, Wali B, Stein DG, Sayeed I (2014) Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats:involvement of the VEGF-MMP pathway. J Cereb Blood Flow Metab 34(1):72–80

    Article  CAS  PubMed  Google Scholar 

  30. Liu B, Zhang YH, Jiang Y, Li LL, Chen Q, He GQ, Tan XD, Li CQ (2015) Gadd45b is a novel mediator of neuronal apoptosis in ischemic stroke. Int J Biol Sci 11(3):353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  32. Chen M, Zhou X, Yu L, Liu Q, Sheng X, Wang Z, Wang S, Jiang H, Zhou S (2016) Low-Level Vagus Nerve Stimulation Attenuates Myocardial Ischemic Reperfusion Injury by Antioxidative Stress and Antiapoptosis Reactions in Canines. J Cardiovasc Electrophysiol 27(2):224–231

    Article  PubMed  Google Scholar 

  33. Liu AF, Zhao FB, Wang J, Lu YF, Tian J, Zhao Y, Gao Y, Hu XJ, Liu XY, Tan J, Tian YL, Shi J (2016) Effects of vagus nerve stimulation on cognitive functioning in rats with cerebral ischemia reperfusion. J Transl Med 14:101

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yenari MA, Han HS (2012) Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 13(4):267–278

    CAS  PubMed  Google Scholar 

  35. Mravec B (2010) The role of the vagus nerve in stroke. Auton Neurosci 158(1–2):8–12

    Article  PubMed  Google Scholar 

  36. Dawson J, Pierce D, Dixit A, Kimberley TJ, Robertson M, Tarver B, Hilmi O, McLean J, Forbes K, Kilgard MP, Rennaker RL, Cramer SC, Walters M, Engineer N (2016) Safety, Feasibility, and Efficacy of Vagus Nerve Stimulation Paired With Upper-Limb Rehabilitation After Ischemic Stroke. Stroke 47(1):143–150

    Article  PubMed  Google Scholar 

  37. Suk K (2012) Unexpected role of lipocalin-type prostaglandin D synthase in brain: regulation of glial cell migration and morphology. Cell Adh Migr 6(3):160–163

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nagata N, Fujimori K, Okazaki I, Oda H, Eguchi N, Uehara Y, Urade Y (2009) De novo synthesis, uptake and proteolytic processing of lipocalin-type prostaglandin D synthase, beta-trace, in the kidneys. FEBS J 276(23):7146–7158

    Article  CAS  PubMed  Google Scholar 

  39. Trimarco A, Forese MG, Alfieri V, Lucente A, Brambilla P, Dina G, Pieragostino D, Sacchetta P, Urade Y, Boizet-Bonhoure B, Martinelli Boneschi F, Quattrini A, Taveggia C (2014) Prostaglandin D2 synthase/GPR44:a signaling axis in PNS myelination. Nat Neurosci 17(12):1682–1692

    Article  CAS  PubMed  Google Scholar 

  40. Fukuhara A, Yamada M, Fujimori K, Miyamoto Y, Kusumoto T, Nakajima H, Inui T (2012) Lipocalin-type prostaglandin D synthase protects against oxidative stress-induced neuronal cell death. Biochem J 443(1):75–84

    Article  CAS  PubMed  Google Scholar 

  41. Han F, Takeda K, Ishikawa K, Ono M, Date F, Yokoyama S, Furuyama K, Shinozawa Y, Urade Y, Shibahara S (2009) Induction of lipocalin-type prostaglandin D synthase in mouse heart under hypoxemia. Biochem Biophys Res Commun 385(3):449–453

    Article  CAS  PubMed  Google Scholar 

  42. Taniguchi H, Mohri I, Okabe-Arahori H, Aritake K, Wada K, Kanekiyo T, Narumiya S, Nakayama M, Ozono K, Urade Y, Taniike M (2007) Prostaglandin D2 protects neonatal mouse brain from hypoxic ischemic injury. J Neurosci 27(16):4303–4312

    Article  CAS  PubMed  Google Scholar 

  43. Tokudome S, Sano M, Shinmura K, Matsuhashi T, Morizane S, Moriyama H, Tamaki K, Hayashida K, Nakanishi H, Yoshikawa N, Shimizu N, Endo J, Katayama T, Murata M, Yuasa S, Kaneda R, Tomita K, Eguchi N, Urade Y, Asano K, Utsunomiya Y, Suzuki T, Taguchi R, Tanaka H, Fukuda K (2009) Glu-cocorticoid protects rodent hearts from ischemia/reperfusion injury by activating lipocalin-type prostaglandin D synthase-derived PGD2 biosynthesis. J Clin Invest 119(6):1477–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Inui T, Mase M, Shirota R, Nagashima M, Okada T, Urade Y (2014) Lipocalin-type prostaglandin D synthase scavenges biliverdin in the cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 34(9):1558–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lazou A, Iliodromitis EK, Cieslak D, Voskarides K, Mousikos S, Bofilis E, Kremastinos DT (2006) Ischemic but not mechanical preconditioning attenuates ischemia/reperfusion induced myocardial apoptosis in anaesthetized rabbits: the role of Bcl-2 family proteins and ERK1/2. Apoptosis 11(12):2195–2204

    Article  CAS  PubMed  Google Scholar 

  46. Mayer B, Oberbauer R (2003) Mitochondrial regulation of apoptosis. News Pysiol Sci 18:89–94

    CAS  Google Scholar 

  47. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  CAS  PubMed  Google Scholar 

  48. Chunchai T, Samniang B, Sripetchwandee J, Pintana H, Pongkan W, Kumfu S, Shinlapawittayatorn K, KenKnight BH, Chattipakorn N, Chattipakorn SC (2016) Vagus Nerve Stimulation Exerts the Neur-oprotective Effects in Obese-Insulin Resistant Rats. Sci Rep 6:26866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant No. 81271306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest with regard to the content of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ma, J., Jin, X. et al. L-PGDS Mediates Vagus Nerve Stimulation-Induced Neuroprotection in a Rat Model of Ischemic Stroke by Suppressing the Apoptotic Response. Neurochem Res 42, 644–655 (2017). https://doi.org/10.1007/s11064-016-2121-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2121-8

Keywords

Navigation