Skip to main content
Log in

Branched-Chain Amino Acids and Brain Metabolism

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This review aims to provide a historical reference of branched-chain amino acid (BCAA) metabolism and provide a link between peripheral and central nervous system (CNS) metabolism of BCAAs. Leucine, isoleucine, and valine (Leu, Ile, and Val) are unlike most other essential amino acids (AA), being transaminated initially in extrahepatic tissues, and requiring interorgan or intertissue shuttling for complete catabolism. Within the periphery, BCAAs are essential AAs and are required for protein synthesis, and are key nitrogen donors in the form of Glu, Gln, and Ala. Leucine is an activator of the mammalian (or mechanistic) target of rapamycin, the master regulator of cell growth and proliferation. The tissue distribution and activity of the catabolic enzymes in the peripheral tissues as well as neurological effects in Maple Syrup Urine Disease (MSUD) show the BCAAs have a role in the CNS. Interestingly, there are significant differences between murine and human CNS enzyme distribution and activities. In the CNS, BCAAs have roles in neurotransmitter synthesis, protein synthesis, food intake regulation, and are implicated in diseases. MSUD is the most prolific disease associated with BCAA metabolism, affecting the branched-chain α-keto acid dehydrogenase complex (BCKDC). Mutations in the branched-chain aminotransferases (BCATs) and the kinase for BCKDC also result in neurological dysfunction. However, there are many questions of BCAA metabolism in the CNS (as well as the periphery) that remain elusive. We discuss areas of BCAA and BCKA metabolism that have yet to be researched adequately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kimball SR, Shantz LM, Horetsky RL, Jefferson LS (1999) Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem 274:11647–11652

    Article  CAS  PubMed  Google Scholar 

  2. Sweatt AJ, Wood M, Suryawan A, Wallin R, Willingham MC, Hutson SM (2004) Branched-chain amino acid catabolism: unique segregation of pathway enzymes in organ systems and peripheral nerves. Am J Physiol Endocrinol Metab 286:E64–E76

    Article  CAS  PubMed  Google Scholar 

  3. Chang TW, Goldberg AL (1978) The metabolic fates of amino acids and the formation of glutamine in skeletal muscle. J Biol Chem 253:3685–3693

    CAS  PubMed  Google Scholar 

  4. Hutson SM, Sweatt AJ, Lanoue KF (2005) Branched-chain [corrected] amino acid metabolism: implications for establishing safe intakes. J Nutr 135:1557S–1564S

    CAS  PubMed  Google Scholar 

  5. Shinnick FL, Harper AE (1976) Branched-chain amino acid oxidation by isolated rat tissue preparations. Biochim Biophys Acta 437:477–486

    Article  CAS  PubMed  Google Scholar 

  6. Yudkoff M (1997) Brain metabolism of branched-chain amino acids. Glia 21:92–98

    Article  CAS  PubMed  Google Scholar 

  7. Yudkoff M (2016) Interactions in the metabolism of glutamate and the branched-chain amino acids and ketoacids in the CNS. Neurochem Res. doi:10.1007/s11064-016-2057-z

    PubMed  PubMed Central  Google Scholar 

  8. Raju K, Doulias PT, Evans P, Krizman EN, Jackson JG, Horyn O, Daikhin Y, Nissim I, Yudkoff M, Nissim I, Sharp KA, Robinson MB, Ischiropoulos H (2015) Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation. Sci Signal 8:ra68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 49:1651–1658

    Article  CAS  PubMed  Google Scholar 

  10. Jayakumar AR, Norenberg MD (2016) Glutamine synthetase: role in neurological disorders. Adv Neurobiol 13:327–350

    Article  PubMed  Google Scholar 

  11. DeSantiago S, Torres N, Suryawan A, Tovar AR, Hutson SM (1998) Regulation of branched-chain amino acid metabolism in the lactating rat. J Nutr 128:1165–1171

    CAS  PubMed  Google Scholar 

  12. Hutson SM, Fenstermacher D, Mahar C (1988) Role of mitochondrial transamination in branched chain amino acid metabolism. J Biol Chem 263:3618–3625

    CAS  PubMed  Google Scholar 

  13. Hutson SM (1988) Subcellular distribution of branched-chain aminotransferase activity in rat tissues. J Nutr 118:1475–1481

    CAS  PubMed  Google Scholar 

  14. Ichihara A, Koyama E (1966) Transaminase of branched chain Amino Acids .I. branched chain amino acids-α-ketoglutarate transaminase. J Biochem 59:160–169

    Article  CAS  PubMed  Google Scholar 

  15. Mcmenamy RH, Shoemaker WC, Elwyn D, Richmond JE (1962) Uptake and metabolism of amino acids by dog liver perfused in situ. Am J Physiol 202:407–414

    CAS  Google Scholar 

  16. Christen P, Metzler DE (1985) Transaminases. Wiley, New York

    Google Scholar 

  17. Hutson SM, Wallin R, Hall TR (1992) Identification of mitochondrial branched chain aminotransferase and its isoforms in rat tissues. J Biol Chem 267:15681–15686

    CAS  PubMed  Google Scholar 

  18. Hall TR, Wallin R, Reinhart GD, Hutson SM (1993) Branched chain aminotransferase isoenzymes. Purification and characterization of the rat brain isoenzyme. J Biol Chem 268:3092–3098

    CAS  PubMed  Google Scholar 

  19. Cangiano C, Cardelli-Cangiano P, James JH, Rossi-Fanelli F, Patrizi MA, Brackett KA, Strom R, Fischer JE (1983) Brain microvessels take up large neutral amino acids in exchange for glutamine. Cooperative role of Na+-dependent and Na+-independent systems. J Biol Chem 258:8949–8954

    CAS  PubMed  Google Scholar 

  20. Cooper AJ, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519

    CAS  PubMed  Google Scholar 

  21. Reed LJ, Damuni Z, Merryfield ML (1985) Regulation of mammalian pyruvate and branched-chain α-keto acid dehydrogenase complexes by phosphorylation-dephosphorylation. Curr Top Cell Regul 27:41–49

    Article  CAS  PubMed  Google Scholar 

  22. Shimomura Y, Honda T, Shiraki M, Murakami T, Sato J, Kobayashi H, Mawatari K, Obayashi M, Harris RA (2006) Branched-chain amino acid catabolism in exercise and liver disease. J Nutr 136:250 S-253 S

  23. Shimomura Y, Kitaura Y, Kadota Y, Ishikawa T, Kondo Y, Xu M, Ota M, Morishita Y, Bariuan JV, Zhen H (2015) Novel physiological functions of branched-chain amino acids. J Nutr Sci Vitaminol (Tokyo) 61:S112–114

    Article  Google Scholar 

  24. Burrage LC, Nagamani SC, Campeau PM, Lee BH (2014) Branched-chain amino acid metabolism: from rare mendelian diseases to more common disorders. Hum Mol Genet 23:R1–R8

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harper AE (1989) Thoughts on the role of branched-chain alpha-keto acid dehydrogenase complex in nitrogen metabolism. Ann NY Acad Sci 573:267–273

    Article  CAS  PubMed  Google Scholar 

  26. Hutson SM, Cree TC, Harper AE (1978) Regulation of leucine and alpha-ketoisocaproate metabolism in skeletal muscle. J Biol Chem 253:8126–8133

    CAS  PubMed  Google Scholar 

  27. Hutson SM, Zapalowski C, Cree TC, Harper AE (1980) Regulation of leucine and alpha-ketoisocaproic acid metabolism in skeletal muscle. Effects of starvation and insulin. J Biol Chem 255:2418–2426

    CAS  PubMed  Google Scholar 

  28. Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44:933–955

    Article  CAS  PubMed  Google Scholar 

  29. Elia M, Livesey G (1983) Effects of ingested steak and infused leucine on forelimb metabolism in man and the fate of the carbon skeletons and amino groups of branched-chain amino acids. Clin Sci (Lond) 64:517–526

    Article  CAS  Google Scholar 

  30. Abumrad NN, Miller B (1983) The physiologic and nutritional significance of plasma-free amino acid levels. JPEN J Parenter Enteral Nutr 7:163–170

    Article  CAS  PubMed  Google Scholar 

  31. Gillim SE, Paxton R, Cook GA, Harris RA (1983) Activity state of the branched chain alpha-ketoacid dehydrogenase complex in heart, liver, and kidney of normal, fasted, diabetic, and protein-starved rats. Biochem Biophys Res Commun 111:74–81

    Article  CAS  PubMed  Google Scholar 

  32. Goodwin GW, Zhang B, Paxton R, Harris RA (1988) Determination of activity and activity state of branched-chain α-keto acid dehydrogenase in rat tissues. Methods Enzymol 166:189–201

    Article  CAS  PubMed  Google Scholar 

  33. Hutson SM (1986) Branched chain α-keto acid oxidative decarboxylation in skeletal muscle mitochondria. Effect of isolation procedure and mitochondrial delta pH. J Biol Chem 261:4420–4425

    CAS  PubMed  Google Scholar 

  34. Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM (1998) A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr 68:72–81

    CAS  PubMed  Google Scholar 

  35. Felig P (1973) The glucose-alanine cycle. Metabolism 22:179–207

    Article  CAS  PubMed  Google Scholar 

  36. Windmueller HG, Spaeth AE (1974) Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem 249:5070–5079

    CAS  PubMed  Google Scholar 

  37. White PJ, Lapworth AL, An J, Wang L, McGarrah RW, Stevens RD, Ilkayeva O, George T, Muehlbauer MJ, Bain JR, Trimmer JK, Brosnan MJ, Rolph TP, Newgard CB (2016) Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol Metab 5:538–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, Schmidt AF, Imamura F, Stewart ID, Perry JR, Marney L, Koulman A, Karoly ED, Forouhi NG, Sjogren RJ, Naslund E, Zierath JR, Krook A, Savage DB, Griffin JL, Chaturvedi N, Hingorani AD, Khaw KT, Barroso I, McCarthy MI, O’Rahilly S, Wareham NJ, Langenberg C (2016) Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. PLoS Med 13:e1002179

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ananieva EA, Patel CH, Drake CH, Powell JD, Hutson SM (2014) Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J Biol Chem 289:18793–18804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ananieva EA, Powell JD, Hutson SM (2016) Leucine metabolism in T cell activation: mTOR signaling and beyond. Adv Nutr 7:798S–805S

    Article  PubMed  Google Scholar 

  41. Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM, Bauer MR, Lau AN, Ji BW, Dixit PD, Hosios AM, Muir A, Chin CR, Freinkman E, Jacks T, Wolpin BM, Vitkup D, Vander Heiden MG (2016) Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353:1161–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yudkoff M, Daikhin Y, Melo TM, Nissim I, Sonnewald U, Nissim I (2007) The ketogenic diet and brain metabolism of amino acids: relationship to the anticonvulsant effect. Annu Rev Nutr 27:415–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dodd PR, Williams SH, Gundlach AL, Harper PA, Healy PJ, Dennis JA, Johnston GA (1992) Glutamate and γ-aminobutyric acid neurotransmitter systems in the acute phase of maple syrup urine disease and citrullinemia encephalopathies in newborn calves. J Neurochem 59:582–590

    Article  CAS  PubMed  Google Scholar 

  44. Waagepetersen HS, Sonnewald U, Schousboe A (2003) Compartmentation of glutamine, glutamate, and GABA metabolism in neurons and astrocytes: functional implications. Neuroscientist 9:398–403

    Article  CAS  PubMed  Google Scholar 

  45. Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Lazarow A, Nissim I (2005) Brain amino acid requirements and toxicity: the example of leucine. J Nutr 135:1531S–1538S

    CAS  PubMed  Google Scholar 

  46. Gamberino WC, Berkich DA, Lynch CJ, Xu B, LaNoue KF (1997) Role of pyruvate carboxylase in facilitation of synthesis of glutamate and glutamine in cultured astrocytes. J Neurochem 69:2312–2325

    Article  CAS  PubMed  Google Scholar 

  47. McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    Article  CAS  PubMed  Google Scholar 

  48. McKenna MC, Tildon JT, Stevenson JH, Huang X (1996) New insights into the compartmentation of glutamate and glutamine in cultured rat brain astrocytes. Dev Neurosci 18:380–390

    Article  CAS  PubMed  Google Scholar 

  49. Hutson SM, Berkich D, Drown P, Xu B, Aschner M, LaNoue KF (1998) Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism. J Neurochem 71:863–874

    Article  CAS  PubMed  Google Scholar 

  50. Hutson SM, Lieth E, LaNoue KF (2001) Function of leucine in excitatory neurotransmitter metabolism in the central nervous system. J Nutr 131:846S–850S

    CAS  PubMed  Google Scholar 

  51. Lieth E, LaNoue KF, Berkich DA, Xu B, Ratz M, Taylor C, Hutson SM (2001) Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem 76:1712–1723

    Article  CAS  PubMed  Google Scholar 

  52. Yudkoff M, Nissim I, Kim S, Pleasure D, Hummeler K, Segal S (1983) [N-15] leucine as a source of [N-15] glutamate in organotypic cerebellar explants. Biochem Bioph Res Commun 115:174–179

    Article  CAS  Google Scholar 

  53. Yudkoff M, Daikhin Y, Lin ZP, Nissim I, Stern J, Pleasure D, Nissim I (1994) Interrelationships of leucine and glutamate metabolism in cultured astrocytes. J Neurochem 62:1192–1202

    Article  CAS  PubMed  Google Scholar 

  54. Bixel MG, Hutson SM, Hamprecht B (1997) Cellular distribution of branched-chain amino acid aminotransferase isoenzymes among rat brain glial cells in culture. J Histochem Cytochem 45:685–694

    Article  CAS  PubMed  Google Scholar 

  55. Yudkoff M, Daikhin Y, Grunstein L, Nissim I, Stern J, Pleasure D, Nissim I (1996) Astrocyte leucine metabolism: significance of branched-chain amino acid transamination. J Neurochem 66:378–385

    Article  CAS  PubMed  Google Scholar 

  56. Hutson SM, Bledsoe RK, Hall TR, Dawson PA (1995) Cloning and expression of the mammalian cytosolic branched chain aminotransferase isoenzyme. J Biol Chem 270:30344–30352

    Article  CAS  PubMed  Google Scholar 

  57. Garcia-Espinosa MA, Wallin R, Hutson SM, Sweatt AJ (2007) Widespread neuronal expression of branched-chain aminotransferase in the CNS: implications for leucine/glutamate metabolism and for signaling by amino acids. J Neurochem 100:1458–1468

    CAS  PubMed  Google Scholar 

  58. Sweatt AJ, Garcia-Espinosa MA, Wallin R, Hutson SM (2004) Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus. J Comp Neurol 477:360–370

    Article  CAS  PubMed  Google Scholar 

  59. Bixel M, Shimomura Y, Hutson S, Hamprecht B (2001) Distribution of key enzymes of branched-chain amino acid metabolism in glial and neuronal cells in culture. J Histochem Cytochem 49:407–418

    Article  CAS  PubMed  Google Scholar 

  60. Kanamori K, Ross BD, Kondrat RW (1998) Rate of glutamate synthesis from leucine in rat brain measured in vivo by 15 N NMR. J Neurochem 70:1304–1315

    Article  CAS  PubMed  Google Scholar 

  61. Kanamori K (2016) In vivo N-15 MRS study of glutamate metabolism in the rat brain. Anal Biochem. doi:10.1016/j.ab.2016.08.025

  62. Sakai R, Cohen DM, Henry JF, Burrin DG, Reeds PJ (2004) Leucine-nitrogen metabolism in the brain of conscious rats: its role as a nitrogen carrier in glutamate synthesis in glial and neuronal metabolic compartments. J Neurochem 88:612–622

    Article  CAS  PubMed  Google Scholar 

  63. Rothman DL, De Feyter HM, Maciejewski PK, Behar KL (2012) Is there in vivo evidence for amino acid shuttles carrying ammonia from neurons to astrocytes? Neurochem Res 37:2597–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Conway ME, Hutson SM (2016) BCAA Metabolism and NH3 Homeostasis. Adv Neurobiol 13:99–132

    Article  CAS  PubMed  Google Scholar 

  65. Hull J, Hindy ME, Kehoe PG, Chalmers K, Love S, Conway ME (2012) Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation. J Neurochem 123:997–1009

    Article  CAS  PubMed  Google Scholar 

  66. Islam MM, Nautiyal M, Wynn RM, Mobley JA, Chuang DT, Hutson SM (2010) Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATM). J Biol Chem 285:265–276

    Article  CAS  PubMed  Google Scholar 

  67. Hutson SM, Islam MM, Zaganas I (2011) Interaction between glutamate dehydrogenase (GDH) and l-leucine catabolic enzymes: Intersecting metabolic pathways. Neurochem Int 59:518–524

    Article  CAS  PubMed  Google Scholar 

  68. Islam MM, Wallin R, Wynn RM, Conway M, Fujii H, Mobley JA, Chuang DT, Hutson SM (2007) A novel branched-chain amino acid metabolon. Protein–protein interactions in a supramolecular complex. J Biol Chem 282:11893–11903

    Article  CAS  PubMed  Google Scholar 

  69. Garza-Lombo C, Gonsebatt ME (2016) Mammalian target of rapamycin: its role in early neural development and in adult and aged brain function. Front Cell Neurosci 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603

    Article  CAS  PubMed  Google Scholar 

  71. Weber JD, Gutmann DH (2012) Deconvoluting mTOR biology. Cell Cycle 11:236–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garelick MG, Kennedy BK (2011) TOR on the brain. Exp Gerontol 46:155–163

    Article  CAS  PubMed  Google Scholar 

  73. Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR (2000) Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 130:2413–2419

    CAS  PubMed  Google Scholar 

  74. Kimball SR, Jefferson LS (2006) Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr 136:227S–231S

    CAS  PubMed  Google Scholar 

  75. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312:927–930

    Article  CAS  PubMed  Google Scholar 

  76. Chantranupong L, Wolfson RL, Sabatini DM (2015) Nutrient-sensing mechanisms across evolution. Cell 161:67–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zoncu R, Bar-Peled L, Efeyan A, Wang SY, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside–out mechanism that requires the vacuolar H+−ATPase. Science 334:678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24:400–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149:410–424

    Article  CAS  PubMed  Google Scholar 

  80. Hu F, Xu Y, Liu F (2016) Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis. Am J Physiol Endocrinol Metab 310:E994–E1002

    Article  PubMed  Google Scholar 

  81. Xu Y, Elmquist JK, Fukuda M (2011) Central nervous control of energy and glucose balance: focus on the central melanocortin system. Ann NY Acad Sci 1243:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lynch CJ, Gern B, Lloyd C, Hutson SM, Eicher R, Vary TC (2006) Leucine in food mediates some of the postprandial rise in plasma leptin concentrations. Am J Physiol Endocrinol Metab 291:E621–E630

    Article  CAS  PubMed  Google Scholar 

  83. Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, Kemp BE, Witters LA, Mimura O, Yonezawa K (2003) A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 8:65–79

    Article  CAS  PubMed  Google Scholar 

  84. Andre C, Cota D (2012) Coupling nutrient sensing to metabolic homoeostasis: the role of the mammalian target of rapamycin complex 1 pathway. Proc Nutr Soc 71:502–510

    Article  CAS  PubMed  Google Scholar 

  85. Zampieri TT, Pedroso JA, Furigo IC, Tirapegui J, Donato J Jr (2013) Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus. PLoS ONE 8:e84094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Scaini G, Tonon T, de Souza CF, Schuk PF, Ferreira GC, Neto JS, Amorin T, Schwartz IV, Streck EL (2016) Serum markers of neurodegeneration in maple syrup urine disease. Mol Neurobiol

  87. Scriver CR (2001) The metabolic & molecular bases of inherited disease. McGraw-Hill, New York

    Google Scholar 

  88. Muelly ER, Moore GJ, Bunce SC, Mack J, Bigler DC, Morton DH, Strauss KA (2013) Biochemical correlates of neuropsychiatric illness in maple syrup urine disease. J Clin Invest 123:1809–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mazariegos GV, Morton DH, Sindhi R, Soltys K, Nayyar N, Bond G, Shellmer D, Shneider B, Vockley J, Strauss KA (2012) Liver transplantation for classical maple syrup urine disease: long-term follow-up in 37 patients and comparative United Network for Organ Sharing experience. J Pediatr 160(116–121):e111

    Google Scholar 

  90. Korein J, Sansaricq C, Kalmijn M, Honig J, Lange B (1994) Maple syrup urine disease: clinical, EEG, and plasma amino acid correlations with a theoretical mechanism of acute neurotoxicity. Int J Neurosci 79:21–45

    Article  CAS  PubMed  Google Scholar 

  91. Wang XL, Li CJ, Xing Y, Yang YH, Jia JP (2015) Hypervalinemia and hyperleucine-isoleucinemia caused by mutations in the branched-chain-amino-acid aminotransferase gene. J Inherit Metab Dis 38:855–861

    Article  CAS  PubMed  Google Scholar 

  92. Chen CD, Lin CH, Chuankhayan P, Huang YC, Hsieh YC, Huang TF, Guan HH, Liu MY, Chang WC, Chen CJ (2012) Crystal structures of complexes of the branched-chain aminotransferase from Deinococcus radiodurans with α-ketoisocaproate and l-glutamate suggest the radiation resistance of this enzyme for catalysis. J Bacteriol 194:6206–6216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Castell A, Mille C, Unge T (2010) Structural analysis of mycobacterial branched-chain aminotransferase: implications for inhibitor design. Acta Crystallogr D Biol Crystallogr 66:549–557

    Article  CAS  PubMed  Google Scholar 

  94. Goto M, Miyahara I, Hayashi H, Kagamiyama H, Hirotsu K (2003) Crystal structures of branched-chain amino acid aminotransferase complexed with glutamate and glutarate: true reaction intermediate and double substrate recognition of the enzyme. BioChemistry 42:3725–3733

    Article  CAS  PubMed  Google Scholar 

  95. Yennawar NH, Conway ME, Yennawar HP, Farber GK, Hutson SM (2002) Crystal structures of human mitochondrial branched chain aminotransferase reaction intermediates: ketimine and pyridoxamine phosphate forms. BioChemistry 41:11592–11601

    Article  CAS  PubMed  Google Scholar 

  96. Sitta A, Ribas GS, Mescka CP, Barschak AG, Wajner M, Vargas CR (2014) Neurological damage in MSUD: the role of oxidative stress. Cell Mol Neurobiol 34:157–165

    Article  CAS  PubMed  Google Scholar 

  97. de Lima Pelaez P, Funchal C, Loureiro SO, Heimfarth L, Zamoner A, Gottfried C, Latini A, Wajner M, Pessoa-Pureur R (2007) Branched-chain amino acids accumulating in maple syrup urine disease induce morphological alterations in C6 glioma cells probably through reactive species. Int J Dev Neurosci 25:181–189

    Article  CAS  Google Scholar 

  98. Cooper AJ, Bruschi SA, Conway M, Hutson SM (2003) Human mitochondrial and cytosolic branched-chain aminotransferases are cysteine S-conjugate beta-lyases, but turnover leads to inactivation. Biochem Pharmacol 65:181–192

    Article  CAS  PubMed  Google Scholar 

  99. Conway ME, Yennawar N, Wallin R, Poole LB, Hutson SM (2003) Human mitochondrial branched chain aminotransferase: structural basis for substrate specificity and role of redox active cysteines. Biochim Biophys Acta 1647:61–65

    Article  CAS  PubMed  Google Scholar 

  100. Funchal C, Gottfried C, de Almeida LM, dos Santos AQ, Wajner M, Pessoa-Pureur R (2005) Morphological alterations and cell death provoked by the branched-chain alpha-amino acids accumulating in maple syrup urine disease in astrocytes from rat cerebral cortex. Cell Mol Neurobiol 25:851–867

    Article  PubMed  Google Scholar 

  101. Garcia-Cazorla A, Oyarzabal A, Fort J, Robles C, Castejon E, Ruiz-Sala P, Bodoy S, Merinero B, Lopez-Sala A, Dopazo J, Nunes V, Ugarte M, Artuch R, Palacin M, Rodriguez-Pombo P, Alcaide P, Navarrete R, Sanz P, Font-Llitjos M, Vilaseca MA, Ormaizabal A, Pristoupilova A, Agullo SB (2014) Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients. Hum Mutat 35:470–477

    Article  CAS  PubMed  Google Scholar 

  102. Novarino G, El-Fishawy P, Kayserili H, Meguid NA, Scott EM, Schroth J, Silhavy JL, Kara M, Khalil RO, Ben-Omran T, Ercan-Sencicek AG, Hashish AF, Sanders SJ, Gupta AR, Hashem HS, Matern D, Gabriel S, Sweetman L, Rahimi Y, Harris RA, State MW, Gleeson JG (2012) Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 338:394–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Joshi MA, Jeoung NH, Obayashi M, Hattab EM, Brocken EG, Liechty EA, Kubek MJ, Vattem KM, Wek RC, Harris RA (2006) Impaired growth and neurological abnormalities in branched-chain alpha-keto acid dehydrogenase kinase-deficient mice. Biochem J 400:153–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hutson SM (2006) The case for regulating indispensable amino acid metabolism: the branched-chain α-keto acid dehydrogenase kinase-knockout mouse. Biochem J 400:e1–e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Harris RA, Zhang B, Goodwin GW, Kuntz MJ, Shimomura Y, Rougraff P, Dexter P, Zhao Y, Gibson R, Crabb DW (1990) Regulation of the branched-chain alpha-ketoacid dehydrogenase and elucidation of a molecular basis for maple syrup urine disease. Adv Enzyme Regul 30:245–263

    Article  CAS  PubMed  Google Scholar 

  106. Ashby EL, Kierzkowska M, Hull J, Kehoe PG, Hutson SM, Conway ME (2016) Altered expression of human mitochondrial branched chain aminotransferase in dementia with lewy bodies and vascular dementia. Neurochem Res. doi: 10.1007/s11064-016-1855-7

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Neela Yennawar for analysis of the structural mutations of the mitochondrial BCAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin E. Sperringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperringer, J.E., Addington, A. & Hutson, S.M. Branched-Chain Amino Acids and Brain Metabolism. Neurochem Res 42, 1697–1709 (2017). https://doi.org/10.1007/s11064-017-2261-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2261-5

Keywords

Navigation