Skip to main content
Log in

mRNA and Long Non-coding RNA Expression Profiles in Rats Reveal Inflammatory Features in Sepsis-Associated Encephalopathy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sepsis-associated encephalopathy (SAE) is related to cognitive sequelae in patients in the intensive care unit and can have serious impacts on quality of life after recovery. Although various pathogenic pathways are involved in SAE development, little is known concerning the global role of long non-coding RNAs (lncRNAs) in SAE. Herein, we employed transcriptome sequencing approaches to characterize the effects of lipopolysaccharide (LPS) on lncRNA expression patterns in brain tissue isolated from Sprague–Dawley rats with and without SAE. We performed high-throughput transcriptome sequencing after LPS was intraperitoneally injected and predicted targets and functions using bioinformatics tools. Subsequently, we explored the results in detail according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. LncRNAs were differentially expressed in brain tissue after LPS treatment. After 6 h of LPS exposure, expression of 400 lncRNAs were significantly changed, including an increase in 316 lncRNAs and a decrease in 84 lncRNAs. In addition, 155 mRNAs were differentially expressed, with 84 up-regulated and 71 down-regulated. At 24 h post-treatment, expression of 117 lncRNAs and 57 mRNAs was consistently elevated, while expression of 79 lncRNAs and 21 mRNAs was decreased (change >1.5-fold; p <0.05). We demonstrated for the first time that differentially expressed lncRNAs were predicted to be enriched in a post-chaperonin tubulin folding pathway (GO: 007023), which is closely related to the key step in the tubulin folding process. Interestingly, the predicted pathway (KEGG 04360: axon guidance) was significantly changed under the same conditions. These results reveal that LPS might influence the construction and polarization of microtubules, which exert predominant roles in synaptogenesis and related biofunctions in the rodent central nervous system (CNS). An inventory of LPS-modulated expression profiles from the rodent CNS is an important step toward understanding the function of mRNAs, including lncRNAs, and suggests that microtubule malformation and dysfunction may be involved in SAE pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CLP:

Caecal ligation and puncture

CNS:

Central nervous system

FDR:

False discovery rate

GO:

Gene Ontology

ICU:

Intensive care unit

KEGG:

Kyoto encyclopedia of genes and genomes

LPS:

Lipopolysaccharide

lncRNAs:

Long non-coding RNAs

NT:

Nucleotides

RPKM:

Reads per kilobase per million mapped reads

SAE:

Sepsis-associated encephalopathy

References

  1. Widmann CN, Heneka MT (2014) Long-term cerebral consequences of sepsis. Lancet Neurol 13:630–636

    Article  PubMed  Google Scholar 

  2. Zhang J, Yuan L, Zhang X, Hamblin MH, Zhu T, Meng F et al (2016) Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Exp Neurol 277:162–170

    Article  CAS  PubMed  Google Scholar 

  3. Yin D, He X, Zhang E, Kong R, De W, Zhang Z (2014) Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Med Oncol 31:253

    Article  PubMed  Google Scholar 

  4. Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9:e1003569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Bakel H, Nislow C, Blencowe BJ, Hughes TR (2010) Most “dark matter” transcripts are associated with known genes. PLoS Biol 8:e1000371

    Article  PubMed  PubMed Central  Google Scholar 

  6. Struhl K (2007) Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14:103–105

    Article  CAS  PubMed  Google Scholar 

  7. Lin J, Zhang X, Xue C, Zhang H, Shashaty MG, Gosai SJ, et al. (2015) The long noncoding RNA landscape in hypoxic and inflammatory renal epithelial injury. Am J Physiol Renal Physiol. 309:F901–F913

    Article  Google Scholar 

  8. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14:699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spadaro PA, Bredy TW (2012) Emerging role of non-coding RNA in neural plasticity, cognitive function, and neuropsychiatric disorders. Front Genet 3:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ponjavic J, Oliver PL, Lunter G, Ponting CP (2009) Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet 5:e1000617

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35

    Article  CAS  PubMed  Google Scholar 

  13. Faghihi MA, Zhang M, Huang J, Modarresi F, Van der Brug MP, Nalls MA et al (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11:R56

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roberts TC, Morris KV, Wood MJ (2014) The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond B Biol Sci 369:20130507

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen R, Liu L, Xiao M, Wang F, Lin X (2016) Microarray expression profile analysis of long noncoding RNAs in premature brain injury: a novel point of view. Neuroscience 319:123–133

    Article  CAS  PubMed  Google Scholar 

  16. Buras JA, Holzmann B, Sitkovsky M (2005) Animal models of sepsis: setting the stage. Nat Rev Drug Discov 4:854–865

    Article  CAS  PubMed  Google Scholar 

  17. Freise H, Bruckner UB, Spiegel HU (2001) Animal models of sepsis. J Invest Surg 14:195–212

    Article  CAS  PubMed  Google Scholar 

  18. Remick DG, Ward PA (2005) Evaluation of endotoxin models for the study of sepsis. Shock 24(Suppl 1):7–11

    Article  CAS  PubMed  Google Scholar 

  19. Dyson A, Singer M (2009) Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting? Crit Care Med 37:S30–S37

    Article  PubMed  Google Scholar 

  20. van der Poll T (2012) Preclinical sepsis models. Surg Infect (Larchmt) 13:287–292

    Article  Google Scholar 

  21. Qureshi IA, Mehler MF (2013) Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurother 10:632–646

    Article  CAS  Google Scholar 

  22. Liu SJ, Nowakowski TJ, Pollen AA, Lui JH, Horlbeck MA, Attenello FJ et al (2016) Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol 17:67

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105:716–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. NE II, Heward JA, Roux B, Tsitsiou E, Fenwick PS, Lenzi L et al (2014) Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat Commun 5:3979

    Google Scholar 

  25. Ng SY, Bogu GK, Soh BS, Stanton LW (2013) The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell 51:349–359

    Article  CAS  PubMed  Google Scholar 

  26. Ng SY, Lin L, Soh BS, Stanton LW (2013) Long noncoding RNAs in development and disease of the central nervous system. Trends Genet 29:461–468

    Article  CAS  PubMed  Google Scholar 

  27. Zhou X, Xu J (2015) Identification of Alzheimer’s disease-associated long noncoding RNAs. Neurobiol Aging 36:2925–2931

    Article  CAS  PubMed  Google Scholar 

  28. Voelzmann A, Hahn I, Pearce SP, Sanchez-Soriano N, Prokop A (2016) A conceptual view at microtubule plus end dynamics in neuronal axons. Brain Res Bull 126:226–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Penazzi L, Bakota L, Brandt R (2016) Microtubule dynamics in neuronal development, plasticity, and neurodegeneration. Int Rev Cell Mol Biol 321:89–169

    Article  PubMed  Google Scholar 

  30. Breviario D, Giani S, Morello L (2013) Multiple tubulins: evolutionary aspects and biological implications. Plant J 75:202–218

    Article  CAS  PubMed  Google Scholar 

  31. Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938–947

    Article  CAS  PubMed  Google Scholar 

  32. Beaven R, Dzhindzhev NS, Qu Y, Hahn I, Dajas-Bailador F, Ohkura H et al (2015) Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system. Mol Biol Cell 26:1491–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Prokop A, Beaven R, Qu Y, Sanchez-Soriano N (2013) Using fly genetics to dissect the cytoskeletal machinery of neurons during axonal growth and maintenance. J Cell Sci 126:2331–2341

    Article  CAS  PubMed  Google Scholar 

  34. Twelvetrees A, Hendricks AG, Holzbaur EL (2012) SnapShot: axonal transport. Cell 149:950

    Article  CAS  PubMed  Google Scholar 

  35. Baas PW, Lin S (2011) Hooks and comets: the story of microtubule polarity orientation in the neuron. Dev Neurobiol 71:403–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Risco C, Pinto da Silva P (1995) Cellular functions during activation and damage by pathogens: immunogold studies of the interaction of bacterial endotoxins with target cells. Microsc Res Tech 31:141–158

    Article  CAS  PubMed  Google Scholar 

  37. Russwurm S, Bohm KJ, Muhlig P, Wiederhold M, Konig K, Reinhart K (2000) Lipopolysaccharide induces distinct alterations in the microtubule cytoskeleton of monocytes. Cell Biol Toxicol 16:339–346

    Article  CAS  PubMed  Google Scholar 

  38. Bohm KJ, Vater W, Russwurm S, Reinhart K, Unger E (1998) Lipopolysaccharide-caused fragmentation of individual microtubules in vitro observed by video-enhanced differential interference contrast microscopy. FEBS Lett 425:134–136

    Article  CAS  PubMed  Google Scholar 

  39. Wilson PG, Borisy GG (1997) Evolution of the multi-tubulin hypothesis. Bioessays 19:451–454

    Article  CAS  PubMed  Google Scholar 

  40. Lewis SA, Tian G, Cowan NJ (1997) The alpha- and beta-tubulin folding pathways. Trends Cell Biol 7:479–484

    Article  CAS  PubMed  Google Scholar 

  41. Lopez-Fanarraga M, Avila J, Guasch A, Coll M, Zabala JC (2001) Review: postchaperonin tubulin folding cofactors and their role in microtubule dynamics. J Struct Biol 135:219–229

    Article  CAS  PubMed  Google Scholar 

  42. Garcia-Mayoral MF, Castano R, Fanarraga ML, Zabala JC, Rico M, Bruix M (2011) The solution structure of the N-terminal domain of human tubulin binding cofactor C reveals a platform for tubulin interaction. PLoS One 6:e25912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bhamidipati A, Lewis SA, Cowan NJ (2000) ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. J Cell Biol 149:1087–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prokop A (2013) The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Dev 8:17

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kim J, Martignetti JA, Shen MR, Brosius J, Deininger P (1994) Rodent BC1 RNA gene as a master gene for ID element amplification. Proc Natl Acad Sci USA 91:3607–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. DeChiara TM, Brosius J (1987) Neural BC1 RNA: cDNA clones reveal nonrepetitive sequence content. Proc Natl Acad Sci USA 84:2624–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sosinska P, Mikula-Pietrasik J, Ksiazek K (2015) The double-edged sword of long non-coding RNA: the role of human brain-specific BC200 RNA in translational control, neurodegenerative diseases, and cancer. Mutat Res Rev Mutat Res 766:58–67

    Article  CAS  PubMed  Google Scholar 

  48. Tiedge H, Chen W, Brosius J (1993) Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci 13:2382–2390

    CAS  PubMed  Google Scholar 

  49. Cristofanilli M, Iacoangeli A, Muslimov IA, Tiedge H (2006) Neuronal BC1 RNA: microtubule-dependent dendritic delivery. J Mol Biol 356:1118–1123

    Article  CAS  PubMed  Google Scholar 

  50. Wang H, Iacoangeli A, Lin D, Williams K, Denman RB, Hellen CU et al (2005) Dendritic BC1 RNA in translational control mechanisms. J Cell Biol 171:811–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martin KC, Zukin RS (2006) RNA trafficking and local protein synthesis in dendrites: an overview. J Neurosci 26:7131–7134

    Article  CAS  PubMed  Google Scholar 

  52. Lewejohann L, Skryabin BV, Sachser N, Prehn C, Heiduschka P, Thanos S et al (2004) Role of a neuronal small non-messenger RNA: behavioural alterations in BC1 RNA-deleted mice. Behav Brain Res 154:273–289

    Article  CAS  PubMed  Google Scholar 

  53. Liu G, Dwyer T (2014) Microtubule dynamics in axon guidance. Neurosci Bull 30:569–583

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wadsworth WG (2015) Understanding axon guidance: attraction, repulsion, and statistical physics. Neural Regen Res 10:176–179

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding for this project was provided by the Natural Science Foundation of China (Grant Number: 81071530).

Author Contributions

WS was a major contributor in manuscript writing and data analysis. LP gave an important direction for study design. ZL participated in animal care and RNA extraction. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Pei.

Ethics declarations

Conflict of interests

The authors report no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Pei, L. & Liang, Z. mRNA and Long Non-coding RNA Expression Profiles in Rats Reveal Inflammatory Features in Sepsis-Associated Encephalopathy. Neurochem Res 42, 3199–3219 (2017). https://doi.org/10.1007/s11064-017-2357-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2357-y

Keywords

Navigation