Skip to main content
Log in

On the Use of Atmospheric Pressure Plasma for the Bio-Decontamination of Polymers and Its Impact on Their Chemical and Morphological Surface Properties

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Low temperature atmospheric pressure plasma processes can be applied to inactivate micro-organisms on products and devices made from synthetic and natural polymers. This study shows that even a short-time exposure to Ar or Ar/O2 plasma of an atmospheric pressure plasma jet leads to an inactivation of Bacillus atrophaeus spores with a maximum reduction of 4 orders of magnitude. However, changes in the surface properties of the plasma exposed material have to be considered, too. Therefore, polyethylene and polystyrene are used as exemplary substrate materials to investigate the effect of plasma treatment in more detail. The influence of process parameters, such as type of operating gas or jet-nozzle to substrate distance, is examined. The results show that short-time plasma treatment with Ar and Ar/O2 affects the surface wettability due to the introduction of polar groups as proofed by X-ray photoelectron spectroscopy. Furthermore, atomic force microscopy images reveal changes in the surface topography. Thus, nanostructures of different heights are observed on the polymeric surface depending on the treatment time and type of process gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chu PK, Chen JY, Wang LP, Huang N (2002) Mater Sci Eng R Rep 36:143

    Article  Google Scholar 

  2. van Kooten TG, Spijker HT, Busscher HJ (2004) Biomaterials 25:1735

    Article  Google Scholar 

  3. Noeske M, Degenhardt J, Strudthoff S, Lommatzsch U (2004) Int J Adhes Adhes 24:171

    Article  Google Scholar 

  4. Moisan M, Barbeau J, Crevier MC, Pelletier J, Philip N, Saoudi B (2002) Pure Appl Chem 74:349

    Article  Google Scholar 

  5. Hippler R, Kersten H, Schmidt M, Schoenbach KH (2008) Low temperature plasmas: fundamentals, technologies, and techniques. Wiley VCH vol. 1, Weinheim

  6. Laroussi M, Alexeff I, Kang WL (2000) IEEE Trans Plasma Sci 28:184

    Article  ADS  Google Scholar 

  7. Rupf S, Lehmann A, Hannig M, Schafer B, Schubert A, Feldmann U, Schindler A (2010) J Med Microbiol 59:206

    Article  Google Scholar 

  8. Stoffels E, Kieft IE, Sladek REJ, van den Bedem LJM, van der Laan EP, Steinbuch M (2006) Plasma Sources Sci Technol 15:169

    Article  ADS  Google Scholar 

  9. Weltmann KD, Brandenburg R, von Woedtke T, Ehlbeck J, Foest R, Stieber M, Kindel E (2008) J Phys D Appl Phys 41:6

    Article  Google Scholar 

  10. Laroussi M (2005) Plasma Process Polym 2:391

    Article  Google Scholar 

  11. Moreau M, Orange N, Feuilloley MGJ (2008) Biotechnol Adv 26:610

    Article  Google Scholar 

  12. Ionita ER, Ionita MD, Stancu EC, Teodorescu M, Dinescu G (2009) Appl Surf Sci 255:5448

    Article  ADS  Google Scholar 

  13. Gomathi N, Mishra D, Maiti TK, Neogi S (2009) J Adhes Sci Technol 23:1861

    Article  Google Scholar 

  14. Lommatzsch U, Pasedag D, Baalmann A, Ellinghorst G, Wagner HE (2007) Plasma Process Polym 4:1041

    Article  Google Scholar 

  15. Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma Process Polym 3:392

    Article  Google Scholar 

  16. Pavithra D, Doble M (2008) Biomed Mater 3:13

    Article  Google Scholar 

  17. Gessner C, Bartels V, Betker T, Matucha U, Penache C, Klages CP (2004) Thin Solid Films 459:118

    Article  ADS  Google Scholar 

  18. Junkar I, Cvelbar U, Lehocky M (2011) Mater Tehnol 45:221

    Google Scholar 

  19. Weltmann KD, Kindel E, Brandenburg R, Meyer C, Bussiahn R, Wilke C, von Woedtke T (2009) Contrib Plasma Phys 49:631

    Article  ADS  Google Scholar 

  20. Lange H, Foest R, Schaefer J, Weltmann KD (2009) IEEE Trans Plasma Sci 37:859

    Article  Google Scholar 

  21. Navratil Z, Trunec D, Smid R, Lazar L (2006) Czech J Phys 56:B944

    Article  Google Scholar 

  22. Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke T, Brandenburg R, von dem Hagen T, Weltmann KD (2011) J Phys D-Appl Phys 44:18

    Article  Google Scholar 

  23. Shintani H, Sakudo A, Burke P, McDonnell G (2010) Exp Ther Med 1:731

    Google Scholar 

  24. Foest R, Bindemann T, Brandenburg R, Kindel E, Lange H, Stieber M, Weltmann KD (2007) Plasma Process Polym 4:460

    Article  Google Scholar 

  25. Laroussi M (2002) IEEE Trans Plasma Sci 30:1409

    Article  ADS  Google Scholar 

  26. Lim JP, Uhm HS, Li SZ (2007) Phys Plasmas 14:6

    Article  Google Scholar 

  27. Schulz-von der Gathen V, Schaper L, Knake N, Reuter S, Niemi K, Gans T, Winter J (2008) J Phys D-Appl Phys 41:6

    Article  Google Scholar 

  28. Dobrynin D, Fridman G, Friedman G, Fridman A (2009) New J Phys 11:26

    Article  Google Scholar 

  29. Xiong Z, Lu XP, Feng A, Pan Y, Ostrikov K (2010) Phys Plasmas 17:6

    Google Scholar 

  30. Bornholdt S, Wolter M, Kersten H (2010) Eur Phys J D 60:653

    Article  ADS  Google Scholar 

  31. Setlow P (2006) J Appl Microbiol 101:514

    Article  Google Scholar 

  32. Brandenburg R, Ehlbeck J, Stieber M, von Woedtke T, Zeymer J, Schluter O, Weltmann KD (2007) Contrib Plasma Phys 47:72

    Article  ADS  Google Scholar 

  33. Fricke K, Quade A, Ohl A, Schröder K, von Woedtke Th (2009) In: von Keudell A, Winter J, Böke M, Schulz-von der Gathen V (eds) Proceedings of the 19th international symposium on plasma chemistry (ISPC 19), Bochum (Germany) edited by, contr. P1.8.29 (www.ispc-conference.org)

  34. Vogelsang A, Ohl A, Steffen H, Foest R, Schröder K, Weltmann KD (2010) Plasma Process Polym 7:16

    Article  Google Scholar 

  35. Beamson G, Briggs D (1992) The Scienta ESCA 300 data base. John Wiley & Sons, Chichester

    Google Scholar 

  36. Fricke K, Steffen H, von Woedtke T, Schroeder K, Weltmann KD (2011) Plasma Process Polym 8:51

    Article  Google Scholar 

  37. Egitto FD (1990) Pure Appl Chem 62:1699

    Article  Google Scholar 

  38. Ataeefard M, Moradian S, Mirabedini M, Ebrahimi M, Asiaban S (2008) Plasma Chem Plasma Process 28:377

    Article  Google Scholar 

  39. Coen MC, Dietler G, Kasas S, Groning P (1996) Appl Surf Sci 103:27

    Article  ADS  Google Scholar 

  40. Teare DOH, Ton-That C, Bradley RH (2000) Surf Interface Anal 29:276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Fricke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fricke, K., Tresp, H., Bussiahn, R. et al. On the Use of Atmospheric Pressure Plasma for the Bio-Decontamination of Polymers and Its Impact on Their Chemical and Morphological Surface Properties. Plasma Chem Plasma Process 32, 801–816 (2012). https://doi.org/10.1007/s11090-012-9378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9378-8

Keywords

Navigation