Skip to main content

Advertisement

Log in

Transition Metal-Mediated Liposomal Encapsulation of Irinotecan (CPT-11) Stabilizes the Drug in the Therapeutically Active Lactone Conformation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To determine whether entrapped transition metals could mediate the active encapsulation of the anticancer drug irinotecan into preformed liposomes. Further, to establish that metal complexation could stabilize liposomal irinotecan in the therapeutically active lactone conformation.

Materials and Methods

Irinotecan was added to preformed 1,2-distearoyl-sn-glycero-phosphocholine/cholesterol (DSPC/chol) liposomes prepared in CuSO4, ZnSO4, MnSO4, or CoSO4 solutions, and drug encapsulation was determined over time. The roles of the transmembrane pH gradient and internal pH were evaluated. TLC and HPLC were used to monitor drug stability and liposome morphology was assessed by cryo-TEM.

Results

Irinotecan was rapidly and efficiently loaded into preformed liposomes prepared in unbuffered (∼pH 3.5) 300 mM CuSO4 or ZnSO4. For Cu-containing liposomes, results suggested that irinotecan loading occurred when the interior pH and the exterior pH were matched; however, addition of nigericin to collapse any residual transmembrane pH gradient inhibited irinotecan loading. Greater than 90% of the encapsulated drug was in its active lactone form and cryo-TEM analysis indicated dark intravesicular electron-dense spots.

Conclusion

Irinotecan is stably entrapped in the active lactone conformation within preformed copper-containing liposomes as a result of metal–drug complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. H. Hsiang, H. Y. Wu, and L. F. Liu. Topoisomerases: novel therapeutic targets in cancer chemotherapy. Biochem. Pharmacol. 37:1801–1802 (1988).

    Article  PubMed  CAS  Google Scholar 

  2. Y. H. Hsiang and L. F. Liu. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res. 48:1722–1726 (1988).

    PubMed  CAS  Google Scholar 

  3. Y. H. Hsiang, M. G. Lihou, and L. F. Liu. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res. 49:5077–5082 (1989).

    PubMed  CAS  Google Scholar 

  4. L. Saltz. Irinotecan-based combinations for the adjuvant treatment of stage III colon cancer. Oncology (Willist. Park N. Y.) 14:47–50 (2000).

    CAS  Google Scholar 

  5. L. B. Saltz, J. V. Cox, C. Blanke, L. S. Rosen, L. Fehrenbacher, M. J. Moore, J. A. Maroun, S. P. Ackland, P. K. Locker, N. Pirotta, G. L. Elfring, and L. L. Miller. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N. Engl. J. Med. 343:905–914 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. K. Noda, Y. Nishiwaki, M. Kawahara, S. Negoro, T. Sugiura, A. Yokoyama, M. Fukuoka, K. Mori, K. Watanabe, T. Tamura, S. Yamamoto, and N. Saijo. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N. Engl. J. Med. 346:85–91 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. K. Sai, N. Kaniwa, S. Ozawa, and J. Sawada. An analytical method for irinotecan (CPT-11) and its metabolites using a high-performance liquid chromatography: parallel detection with fluorescence and mass spectrometry. Biomed. Chromatogr. 16:209–218 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. Y. Kawato, M. Aonuma, Y. Hirota, H. Kuga, and K. Sato. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 51:4187–4191 (1991).

    PubMed  CAS  Google Scholar 

  9. F. Lavelle, M. C. Bissery, S. Andre, F. Roquet, and J. F. Riou. Preclinical evaluation of CPT-11 and its active metabolite SN-38. Semin. Oncol. 23:11–20 (1996).

    PubMed  CAS  Google Scholar 

  10. T. G. Burke and D. Bom. Camptothecin design and delivery approaches for elevating anti-topoisomerase I activities in vivo. Ann. N. Y. Acad. Sci. 922:36–45 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. T. G. Burke and Z. Mi. The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. J. Med. Chem. 37:40–46 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. V. Knight, E. S. Kleinerman, J. C. Waldrep, B. C. Giovanella, B. E. Gilbert, and N. V. Koshkina. 9-Nitrocamptothecin liposome aerosol treatment of human cancer subcutaneous xenografts and pulmonary cancer metastases in mice. Ann. N. Y. Acad. Sci. 922:151–163 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. V. Peikov, S. Ugwu, M. Parmar, A. Zhang, and I. Ahmad. pH-dependent association of SN-38 with lipid bilayers of a novel liposomal formulation. Int. J. Pharm. 299:92-99 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. S. S. Daoud, M. I. Fetouh, and B. C. Giovanella. Antitumor effect of liposome-incorporated camptothecin in human malignant xenografts. Anticancer Drugs 6:83–93 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. P. Tardi, E. Choice, D. Masin, T. Redelmeier, M. Bally, and T. D. Madden. Liposomal encapsulation of topotecan enhances anticancer efficacy in murine and human xenograft models. Cancer Res. 60:3389–3393 (2000).

    PubMed  CAS  Google Scholar 

  16. C. L. Messerer, E. C. Ramsay, D. Waterhouse, R. Ng, E. M. Simms, N. Harasym, P. Tardi, L. D. Mayer, and M. B. Bally. Liposomal irinotecan: formulation development and therapeutic assessment in murine xenograft models of colorectal cancer. Clin. Cancer Res. 10(19):6638–6649 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. J. J. Liu, R. L. Hong, W. F. Cheng, K. Hong, F. H. Chang, and Y. L. Tseng. Simple and efficient liposomal encapsulation of topotecan by ammonium sulfate gradient: stability, pharmacokinetic and therapeutic evaluation. Anticancer Drugs 13:709–717 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. S. A. Abraham, K. Edwards, G. Karlsson, N. Hudon, L. D. Mayer, and M. B. Bally. An evaluation of transmembrane ion gradient-mediated encapsulation of topotecan within liposomes. J. Control. Release 96:449–461 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. G. Haran, R. Cohen, L. K. Bar, and Y. Barenholz. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta 1151:201–215 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. D. B. Fenske, K. F. Wong, E. Maurer, N. Maurer, J. M. Leenhouts, N. Boman, L. Amankwa, and P. R. Cullis. Ionophore-mediated uptake of ciprofloxacin and vincristine into large unilamellar vesicles exhibiting transmembrane ion gradients. Biochim. Biophys. Acta 1414:188–204 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. S. A. Abraham, K. Edwards, G. Karlsson, S. MacIntosh, L. D. Mayer, C. McKenzie, and M. B. Bally. Formation of transition metal-doxorubicin complexes inside liposomes. Biochim. Biophys. Acta 1565:41–54 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. N. Farrell. Biomedical uses and applications of inorganic chemistry. An overview. Coord. Chem. Rev. 232:1–4 (2002).

    Article  CAS  Google Scholar 

  23. N. Farrell. Metal complexes as drugs and chemotherapeutic agents. In J. A. McCleverty, and T. J. Meyer (eds.), Comprehensive Coordination Chemistry. II. Applications of Coordination Chemistry, vol. 9, Elsevier, Amsterdam, 2003, pp. 809–840.

    Google Scholar 

  24. Z. Guo and P. J. Sadler. Metals in medicine. Angew. Chem., Int. Ed. 38:1512–1531 (1999).

    Article  CAS  Google Scholar 

  25. V. Sharma and D. Piwnica-Worms. Metal complexes for therapy and diagnosis of drug resistance. Chem. Rev. 99:2545–2560 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. J. Kuwahara, T. Suzuki, K. Funakoshi, and Y. Sugiura. Photosensitive DNA cleavage and phage inactivation by copper(II)-camptothecin. Biochemistry 25:1216–1221 (1986).

    Article  PubMed  CAS  Google Scholar 

  27. M. J. Hope, M. B. Bally, G. Webb, and P. R. Cullis. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta, Biomembr. 812:55–65 (1985).

    Article  CAS  Google Scholar 

  28. P. R. Harrigan, K. F. Wong, T. E. Redelmeier, J. J. Wheeler, and P. R. Cullis. Accumulation of doxorubicin and other lipophilic amines into large unilamellar vesicles in response to transmembrane pH gradients. Biochim. Biophys. Acta 1149:329–338 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. N. Dos Santos, K. A. Cox, C. A. McKenzie, F. van Baarda, R. C. Gallagher, G. Karlsson, K. Edwards, L. D. Mayer, C. Allen, and M. B. Bally. pH gradient loading of anthracyclines into cholesterol-free liposomes: enhancing drug loading rates through use of ethanol. Biochim. Biophys. Acta 1661:47–60 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. D. F. Chollet, L. Goumaz, A. Renard, G. Montay, L. Vernillet, V. Arnera, and D. J. Mazzo. Simultaneous determination of the lactone and carboxylate forms of the camptothecin derivative CPT-11 and its metabolite SN-38 in plasma by high-performance liquid chromatography. J. Chromatogr., B, Biomed. Sci. Appl. 718:163–175 (1998).

    Article  CAS  Google Scholar 

  31. D. W. Deamer, R. C. Prince, and A. R. Crofts. The response of fluorescent amines to pH gradients across liposome membranes. Biochim. Biophys. Acta 274:323–335 (1972).

    Article  PubMed  CAS  Google Scholar 

  32. D. L. Daleke, K. Hong, and D. Papahadjopoulos. Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochim. Biophys. Acta 1024:352–366 (1990).

    Article  PubMed  CAS  Google Scholar 

  33. L. L. Jung and W. C. Zamboni. Cellular, pharmacokinetic, and pharmacodynamic aspects of response to camptothecins: can we improve it? Drug Resist. Updat. 4:273–288 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. J. Fassberg and V. J. Stella. A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J. Pharm. Sci. 81:676–684 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. V. Brezova, M. Valko, M. Breza, H. Morris, J. Telser, D. Dvoranova, K. Kaiserova, L. Varecka, M. Mazur, and D. Leibfritz. Role of radicals and singlet oxygen in photoactivated DNA cleavage by the anticancer drug camptothecin: an electron paramagnetic resonance study. J. Phys. Chem. B 107:2415–2425 (2003).

    Article  CAS  Google Scholar 

  36. A. S. Taggar, J. Alnajim, M. Anantha, A. Thomas, M. Webb, E. Ramsay, M. B. Bally. Copper-topotecan complexation mediates drug accumulation into liposomes. J. Control.Release 114(1):78–88 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euan Ramsay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsay, E., Alnajim, J., Anantha, M. et al. Transition Metal-Mediated Liposomal Encapsulation of Irinotecan (CPT-11) Stabilizes the Drug in the Therapeutically Active Lactone Conformation. Pharm Res 23, 2799–2808 (2006). https://doi.org/10.1007/s11095-006-9111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9111-5

Key words

Navigation