Skip to main content

Advertisement

Log in

Brain Uptake of Nonsteroidal Anti-Inflammatory Drugs: Ibuprofen, Flurbiprofen, and Indomethacin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

To determine the roles of blood–brain barrier (BBB) transport and plasma protein binding in brain uptake of nonsteroidal anti-inflammatory drugs (NSAIDs)—ibuprofen, flurbiprofen, and indomethacin.

Methods

Brain uptake was measured using in situ rat brain perfusion technique.

Results

[14C]Ibuprofen, [3H]flurbiprofen, and [14C]indomethacin were rapidly taken up into the brain in the absence of plasma protein with BBB permeability–surface area products (PSu) to free drug of (2.63 ± 0.11) × 10−2, (1.60 ± 0.08) × 10−2, and (0.64 ± 0.05) × 10−2 mL s−1 g−1 (n = 9–11), respectively. BBB [14C]ibuprofen uptake was inhibited by unlabeled ibuprofen (K m = 0.85 ± 0.02 mM, V max = 13.5 ± 0.4 nmol s−1 g−1) and indomethacin, but not by pyruvate, probenecid, digoxin, or valproate. No evidence was found for saturable BBB uptake of [3H]flurbiprofen or [14C]indomethacin. Initial brain uptake for all three NSAIDs was reduced by the addition of albumin to the perfusion buffer. The magnitude of the brain uptake reduction correlated with the NSAID free fraction in the perfusate.

Conclusions

Free ibuprofen, flurbiprofen, and indomethacin rapidly cross the BBB, with ibuprofen exhibiting a saturable component of transport. Plasma protein binding limits brain NSAID uptake by reducing the free fraction of NSAID in the circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BBB:

blood–brain barrier

COX:

cyclooxygenase

F :

perfusion fluid flow

f u :

free fraction

K in :

transfer constant for unidirectional uptake

K m :

half saturation constant

NSAIDs:

nonsteroidal anti-inflammatory drugs

PSu :

permeability–surface area product

V max :

maximal transport rate of saturable component

V v :

vascular volume

References

  1. B. A. in t'Veld A. Ruitenberg A. Hofman L. J. Launer C. M. Duijn Particlevan T. Stijnen M. M. Breteler B. H. Stricker (2001) ArticleTitleNon-steroidal antiinflammatory drugs and the risk of Alzheimer's disease N. Engl. J. Med. 345 1515–1521 Occurrence Handle10.1056/NEJMoa010178

    Article  Google Scholar 

  2. L. Gasparini E. Ongini G. Wenk (2004) ArticleTitleNon-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer's disease: old and new mechanisms of action J. Neurochem. 91 521–536 Occurrence Handle15485484 Occurrence Handle1:CAS:528:DC%2BD2cXpsFelsLo%3D Occurrence Handle10.1111/j.1471-4159.2004.02743.x

    Article  PubMed  CAS  Google Scholar 

  3. S. Weggen J. L. Eriksen S. A. Sagi C. U. Pietrzik V. Ozols A. Fauq T. E. Golde E. H. Koo (2003) ArticleTitleEvidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity J. Biol. Chem. 278 31831–31837 Occurrence Handle12805356 Occurrence Handle1:CAS:528:DC%2BD3sXmsVOntbY%3D Occurrence Handle10.1074/jbc.M303592200

    Article  PubMed  CAS  Google Scholar 

  4. J. L. Eriksen S. A. Sagi T. E. Smith S. Weggen P. Das D. C. McLendon V. V. Ozols K. W. Jessing K. H. Zavitz E. H. Koo T. E. Golde (2003) ArticleTitleNSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo J. Clin. Invest. 112 440–449 Occurrence Handle12897211 Occurrence Handle1:CAS:528:DC%2BD3sXmtFemtrY%3D Occurrence Handle10.1172/JCI200318162

    Article  PubMed  CAS  Google Scholar 

  5. A. Mannila J. Rautio M. Lehtonen T. Jarvinen J. Savolainen (2005) ArticleTitleInefficient central nervous system delivery limits the use of ibuprofen in neurodegenerative diseases Eur. J. Pharm. Sci. 24 101–105 Occurrence Handle15626583 Occurrence Handle1:CAS:528:DC%2BD2MXjtlCh Occurrence Handle10.1016/j.ejps.2004.10.004

    Article  PubMed  CAS  Google Scholar 

  6. B. Bannwarth F. Lapicque F. Pehourcq P. Gillet T. Schaeverbeke C. Laborde J. Dehais A. Gaucher P. Netter (1995) ArticleTitleStereoselective disposition of ibuprofen enantiomers in human cerebrospinal fluid Br. J. Clin. Pharmacol. 40 266–269 Occurrence Handle8527289 Occurrence Handle1:CAS:528:DyaK2MXosl2ltr8%3D

    PubMed  CAS  Google Scholar 

  7. M. Matoga F. Pehourcq F. Lagrange G. Tramu B. Bannwarth (1999) ArticleTitleInfluence of molecular lipophilicity on the diffusion of arylpropionate non-steroidal anti-inflammatory drugs into the cerebrospinal fluid Arzneim.-Forsch. 49 477–482 Occurrence Handle1:CAS:528:DyaK1MXktF2ksrg%3D

    CAS  Google Scholar 

  8. D. E. Clark (2003) ArticleTitle In silico prediction of blood–brain barrier permeation Drug Discov. Today 8 927–933 Occurrence Handle14554156 Occurrence Handle1:CAS:528:DC%2BD3sXnvFSiu70%3D Occurrence Handle10.1016/S1359-6446(03)02827-7

    Article  PubMed  CAS  Google Scholar 

  9. D. J. Begley M. W. Brightman (2003) ArticleTitleStructural and functional aspects of the blood–brain barrier Prog. Drug Res. 61 39–78 Occurrence Handle14674608 Occurrence Handle1:CAS:528:DC%2BD3sXpvFert7c%3D

    PubMed  CAS  Google Scholar 

  10. M. D. Habgood D. J. Begley N. J. Abbott (2000) ArticleTitleDeterminants of passive drug entry into the central nervous system Cell. Mol. Neurobiol. 20 231–253 Occurrence Handle10696512 Occurrence Handle1:STN:280:DC%2BD3c7mtFGjsA%3D%3D Occurrence Handle10.1023/A:1007001923498

    Article  PubMed  CAS  Google Scholar 

  11. H. Kusuhara Y. Sugiyama (2005) ArticleTitleActive efflux across the blood–brain barrier: Role of the solute carrier family NeuroRx 2 73–85 Occurrence Handle15717059 Occurrence Handle10.1602/neurorx.2.1.73

    Article  PubMed  Google Scholar 

  12. Y. Shitara D. Sugiyama H. Kusuhara Y. Kato T. Abe P. J. Meier T. Itoh Y. Sugiyama (2002) ArticleTitleComparative inhibitory effects of different compounds on rat oatpl (slc21a1)- and Oatp2 (Slc21a5)-mediated transport Pharm. Res. 19 147–153 Occurrence Handle11883641 Occurrence Handle1:CAS:528:DC%2BD38XitVSmu7Y%3D Occurrence Handle10.1023/A:1014264614637

    Article  PubMed  CAS  Google Scholar 

  13. Y. Nozaki H. Kusuhara H. Endou Y. Sugiyama (2004) ArticleTitleQuantitative evaluation of the drug–drug interactions between methotrexate and nonsteroidal anti-inflammatory drugs in the renal uptake process based on the contribution of organic anion transporters and reduced folate carrier J. Pharmacol. Exp. Ther. 309 226–234 Occurrence Handle14722319 Occurrence Handle1:CAS:528:DC%2BD2cXivFamtLg%3D Occurrence Handle10.1124/jpet.103.061812

    Article  PubMed  CAS  Google Scholar 

  14. N. M. Davies N. M. Skjodt (2000) ArticleTitleChoosing the right nonsteroidal anti-inflammatory drug for the right patient: a pharmacokinetic approach Clin. Pharmacokinet. 38 377–392 Occurrence Handle10843458 Occurrence Handle1:CAS:528:DC%2BD3cXktFGqsLk%3D Occurrence Handle10.2165/00003088-200038050-00001

    Article  PubMed  CAS  Google Scholar 

  15. H. Tanaka K. Mizojiri (1999) ArticleTitleDrug–protein binding and blood–brain barrier permeability J. Pharmacol. Exp. Ther. 288 912–918 Occurrence Handle10027826 Occurrence Handle1:CAS:528:DyaK1MXhs1Kjtbo%3D

    PubMed  CAS  Google Scholar 

  16. Y. Takasato S. I. Rapoport Q. R. Smith (1984) ArticleTitleAn in situ brain perfusion technique to study cerebrovascular transport in the rat Am. J. Physiol. 247 H484–H493 Occurrence Handle6476141 Occurrence Handle1:CAS:528:DyaL2cXmtVOis7g%3D

    PubMed  CAS  Google Scholar 

  17. Q. R. Smith (1996) ArticleTitleBrain perfusion systems for studies of drug uptake and metabolism in the central nervous system Pharm. Biotechnol. 8 285–307 Occurrence Handle8791815 Occurrence Handle1:CAS:528:DyaK2sXosVWjtg%3D%3D

    PubMed  CAS  Google Scholar 

  18. Q. R. Smith (2003) ArticleTitleA review of blood–brain barrier transport techniques Methods Mol. Med. 89 193–208 Occurrence Handle12958421 Occurrence Handle1:CAS:528:DC%2BD3sXntlKnsbo%3D

    PubMed  CAS  Google Scholar 

  19. D. J. Morgan J. L. Huang (1993) ArticleTitleEffect of plasma protein binding on kinetics of capillary uptake and efflux Pharm. Res. 10 300–304 Occurrence Handle8456081 Occurrence Handle1:CAS:528:DyaK3sXhs1SmsLk%3D Occurrence Handle10.1023/A:1018959415963

    Article  PubMed  CAS  Google Scholar 

  20. T. J. Peters (1996) All About Albumin Academic Press, Inc. San Diego, CA

    Google Scholar 

  21. S. I. Rapoport K. Ohno K. D. Pettigrew (1979) ArticleTitleDrug entry into the brain Brain Res. 172 354–359 Occurrence Handle466480 Occurrence Handle1:CAS:528:DyaE1MXls1yitb4%3D Occurrence Handle10.1016/0006-8993(79)90546-8

    Article  PubMed  CAS  Google Scholar 

  22. W. H. Oldendorf B. E. Stoller F. L. Harris (1993) ArticleTitleBlood–brain barrier penetration abolished by N-methyl quaternization of nicotine Proc. Natl. Acad. Sci. USA 90 307–311 Occurrence Handle8419935 Occurrence Handle1:STN:280:ByyC38njs1E%3D

    PubMed  CAS  Google Scholar 

  23. M. Fukuda K. Kitaichi F. Abe Y. Fujimoto K. Takagi T. Morishima T. Hasegawa (2005) ArticleTitleAltered brain penetration of diclofenac and mefenamic acid, but not acetaminophen, in Shiga-like toxin II-treated mice J. Pharmacol. Sci. 97 525–532 Occurrence Handle15821337 Occurrence Handle1:CAS:528:DC%2BD2MXjslGgsbY%3D Occurrence Handle10.1254/jphs.FP0040752

    Article  PubMed  CAS  Google Scholar 

  24. F. G. Russel R. Masereeuw R. A. Aubel Particlevan (2002) ArticleTitleMolecular aspects of renal anionic drug transport Annu. Rev. Physiol. 64 563–594 Occurrence Handle11826280 Occurrence Handle1:CAS:528:DC%2BD38XisFGmsbo%3D Occurrence Handle10.1146/annurev.physiol.64.081501.155913

    Article  PubMed  CAS  Google Scholar 

  25. S. Ohtsuki T. Kikkawa S. Mori S. Hori H. Takanaga M. Otagiri T. Terasaki (2004) ArticleTitleMouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood–brain barrier J. Pharmacol. Exp. Ther. 309 1273–1281 Occurrence Handle14762099 Occurrence Handle1:CAS:528:DC%2BD2cXksFCntbo%3D Occurrence Handle10.1124/jpet.103.063370

    Article  PubMed  CAS  Google Scholar 

  26. B. E. Enerson L. R. Drewes (2003) ArticleTitleMolecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery J. Pharm. Sci. 92 1531–1544 Occurrence Handle12884241 Occurrence Handle1:CAS:528:DC%2BD3sXmtFeksbs%3D Occurrence Handle10.1002/jps.10389

    Article  PubMed  CAS  Google Scholar 

  27. I. Tamai H. Takanaga H. Maeda Y. Sai T. Ogihara H. Higashida A. Tsuji (1995) ArticleTitleParticipation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids Biochem. Biophys. Res. Commun. 214 482–489 Occurrence Handle7677755 Occurrence Handle1:CAS:528:DyaK2MXotV2hsbY%3D Occurrence Handle10.1006/bbrc.1995.2312

    Article  PubMed  CAS  Google Scholar 

  28. A. Tsuji (2005) ArticleTitleSmall molecular drug transfer across the blood–brain barrier via carrier-mediated transport systems NeuroRx 2 54–62 Occurrence Handle15717057 Occurrence Handle10.1602/neurorx.2.1.54

    Article  PubMed  Google Scholar 

  29. S. Ohtsuki T. Takizawa H. Takanaga N. Terasaki T. Kitazawa M. Sasaki T. Abe K. Hosoya T. Terasaki (2003) ArticleTitle In vitro study of the functional expression of organic anion transporting polypeptide 3 at rat choroid plexus epithelial cells and its involvement in the cerebrospinal fluid-to-blood transport of estrone-3-sulfate Mol. Pharmacol. 63 532–537 Occurrence Handle12606759 Occurrence Handle1:CAS:528:DC%2BD3sXitFyrs7c%3D Occurrence Handle10.1124/mol.63.3.532

    Article  PubMed  CAS  Google Scholar 

  30. K. Tohyama H. Kusuhara Y. Sugiyama (2004) ArticleTitleInvolvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood–brain barrier Endocrinology 145 4384–4391 Occurrence Handle15166123 Occurrence Handle1:CAS:528:DC%2BD2cXnt1Citb8%3D Occurrence Handle10.1210/en.2004-0058

    Article  PubMed  CAS  Google Scholar 

  31. K. D. Adkison D. D. Shen (1996) ArticleTitleUptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter J. Pharmacol. Exp. Ther. 276 1189–1200 Occurrence Handle8786552 Occurrence Handle1:CAS:528:DyaK28XhslSgur8%3D

    PubMed  CAS  Google Scholar 

  32. W. M. Pardridge (1998) Targeted delivery of hormones to tissues by plasma proteins P. M. conn (Eds) Handbook of Physiology Section 7: The Endocrine System Oxford University Press New York 335–382

    Google Scholar 

  33. M. Hammarlund-Udenaes L. K. Paalzow E. C. Lange Particlede (1997) ArticleTitleDrug equilibration across the blood–brain barrier—pharmacokinetic considerations based on the microdialysis method Pharm. Res. 14 128–134 Occurrence Handle9090698 Occurrence Handle1:CAS:528:DyaK2sXitFyrsbc%3D Occurrence Handle10.1023/A:1012080106490

    Article  PubMed  CAS  Google Scholar 

  34. B. Bannwarth P. Netter J. Pourel R. J. Royer A. Gaucher (1989) ArticleTitleClinical pharmacokinetics of nonsteroidal anti-inflammatory drugs in the cerebrospinal fluid Biomed. Pharmacother. 43 121–126 Occurrence Handle2660917 Occurrence Handle1:CAS:528:DyaL1MXktVSjsrY%3D Occurrence Handle10.1016/0753-3322(89)90140-6

    Article  PubMed  CAS  Google Scholar 

  35. Y. Deguchi H. Hayashi S. Fujii T. Naito Y. Yokoyama S. Yamada R. Kimura (2000) ArticleTitleImproved brain delivery of a nonsteroidal anti-inflammatory drug with a synthetic glyceride ester: a preliminary attempt at a CNS drug delivery system for the therapy of Alzheimer's disease J. Drug Target 8 371–381 Occurrence Handle11328663 Occurrence Handle1:CAS:528:DC%2BD3MXjtVOlsLc%3D Occurrence Handle10.3109/10611860008997913

    Article  PubMed  CAS  Google Scholar 

  36. X. Liu M. Tu R. S. Kelly C. Chen B. J. Smith (2004) ArticleTitleDevelopment of a computational approach to predict blood– brain barrier permeability Drug Metab. Dispos. 32 132–139 Occurrence Handle14709630 Occurrence Handle1:CAS:528:DC%2BD2cXnsFWqs7k%3D Occurrence Handle10.1124/dmd.32.1.132

    Article  PubMed  CAS  Google Scholar 

  37. T. Haradahira M. Zhang J. Maeda T. Okauchi K. Kawabe T. Kida K. Suzuki T. Suhara (2000) ArticleTitleA strategy for increasing the brain uptake of a radioligand in animals: use of a drug that inhibits plasma protein binding Nucl. Med. Biol. 27 357–360 Occurrence Handle10938470 Occurrence Handle1:CAS:528:DC%2BD3cXlsFCgtro%3D Occurrence Handle10.1016/S0969-8051(00)00096-2

    Article  PubMed  CAS  Google Scholar 

  38. C. Johanson P. McMillan R. Tavares A. Spangengerger J. Duncan G. Silverberg E. Stopa (2004) ArticleTitleHomeostatic capabilities of the choroids plexus epithelium in Alzheimer's disease Cerebrospinal Fluid Res. 1 1–16 Occurrence Handle10.1186/1743-8454-1-3 Occurrence Handle1:CAS:528:DC%2BD2MXjs1eltrs%3D

    Article  CAS  Google Scholar 

  39. G. D. Silverberg G. Heit S. Huhn R. A. Jaffe S. D. Chang H. Bronte-Stewart E. Rubenstein K. Possin T. A. Saul (2001) ArticleTitleThe cerebrospinal fluid rate is reduced in dementia of the Alzheimer type Neurology 57 1763–1766 Occurrence Handle11723260 Occurrence Handle1:STN:280:DC%2BD3Mnnslehuw%3D%3D

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by grant NS052484 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin R. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parepally, J.M.R., Mandula, H. & Smith, Q.R. Brain Uptake of Nonsteroidal Anti-Inflammatory Drugs: Ibuprofen, Flurbiprofen, and Indomethacin. Pharm Res 23, 873–881 (2006). https://doi.org/10.1007/s11095-006-9905-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9905-5

Key Words

Navigation