Skip to main content

Advertisement

Log in

Integration of Preclinical and Clinical Data with Pharmacokinetic Modeling and Simulation to Evaluate Fexofenadine as a Probe for Hepatobiliary Transport Function

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The suitability of fexofenadine as a probe substrate to assess hepatobiliary transport function in humans was evaluated by pharmacokinetic modeling/simulation and in vitro/in situ studies using chemical modulators.

Methods

Simulations based on a pharmacokinetic model developed to describe fexofenadine disposition in humans were conducted to examine the impact of altered hepatobiliary transport on fexofenadine disposition. The effect of GF120918 on fexofenadine disposition was evaluated in human sandwich-cultured hepatocytes (SCH). Additionally, the effect of GF120918, bosentan, and taurocholate on fexofenadine disposition in perfused livers from TR Wistar rats was examined.

Results

Based on modeling/simulation, fexofenadine systemic exposure was most sensitive to changes in the hepatic uptake rate constant, and did not reflect changes in hepatic exposure due to altered hepatic efflux. GF120918 did not impair fexofenadine biliary excretion in human SCH. GF120918 coadministration significantly decreased Cl’biliary to 27.5% of control in perfused rat livers.

Conclusions

Simulations were in agreement with perfused liver data which predicted changes in fexofenadine systemic exposure primarily due to altered hepatic uptake. Fexofenadine is not a suitable probe to assess hepatic efflux function based on systemic concentrations. GF120918-sensitive protein(s) mediate fexofenadine biliary excretion in rat liver, whereas in human hepatocytes multiple efflux proteins are involved in fexofenadine hepatobiliary disposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC:

ATP binding cassette

AUC:

area under the curve

BCA:

Bicinchoninic acid

Bcrp:

breast cancer resistance protein

Bsep:

bile salt export pump

DMEM:

Dulbecco’s modified Eagle’s medium

EHBR:

Eisai hyperbilirubinemic rats

FBS:

Fetal bovine serum

GF120918:

N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide

HBSS:

Hanks’ balanced salt solution

LC/MS/MS:

liquid chromatography with detection by tandem mass spectrometry

MDR1:

multidrug resistance protein 1

Mrp:

multidrug resistance-associated protein

OATP:

organic anion transporting polypeptide

P-gp:

P-glycoprotein

SCH:

sandwich-cultured hepatocytes

TR- :

Mrp2-deficient Wistar rat

WT:

wild-type Wistar rat

REFERENCES

  1. Petri N, Tannergren C, Rungstad D, Lennernas H. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm Res. 2004;21:1398–404. doi:10.1023/B:PHAM.0000036913.90332.b1.

    Article  PubMed  CAS  Google Scholar 

  2. Tannergren C, Knutson T, Knutson L, Lennernas H. The effect of ketoconazole on the in vivo intestinal permeability of fexofenadine using a regional perfusion technique. Br J Clin Pharmacol. 2003;55:182–90. doi:10.1046/j.1365-2125.2003.01722.x.

    Article  PubMed  CAS  Google Scholar 

  3. Tannergren C, Petri N, Knutson L, Hedeland M, Bondesson U, Lennernas H. Multiple transport mechanisms involved in the intestinal absorption and first-pass extraction of fexofenadine. Clin Pharmacol Ther. 2003;74:423–36. doi:10.1016/S0009-9236(03)00238-8.

    Article  PubMed  CAS  Google Scholar 

  4. Lippert C, Ling J, Brown P, Burmaster S, Eller M, Cheng L, et al. Mass balance and pharmacokinetics of MDL 16,455A in healthy, male volunteers. Pharmaceutical Research. 1995;12:S-390.

    Google Scholar 

  5. Tahara H, Kusuhara H, Fuse E, Sugiyama Y. P-glycoprotein plays a major role in the efflux of fexofenadine in the small intestine and blood-brain barrier, but only a limited role in its biliary excretion. Drug Metab Dispos. 2005;33:963–8. doi:10.1124/dmd.105.004192.

    Article  PubMed  CAS  Google Scholar 

  6. Hamman MA, Bruce MA, Haehner-Daniels BD, Hall SD. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther. 2001;69:114–21. doi:10.1067/mcp. 2001.113697.

    Article  PubMed  CAS  Google Scholar 

  7. Banfield C, Gupta S, Marino M, Lim J, Affrime M. Grapefruit juice reduces the oral bioavailability of fexofenadine but not desloratadine. Clin Pharmacokinet. 2002;41:311–8. doi:10.2165/00003088-200241040-00004.

    Article  PubMed  CAS  Google Scholar 

  8. Glaeser H, Bailey DG, Dresser GK, Gregor JC, Schwarz UI, McGrath JS, et al. Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin Pharmacol Ther. 2007;81:362–70. doi:10.1038/sj.clpt.6100056.

    Article  PubMed  CAS  Google Scholar 

  9. Shimizu M, Uno T, Sugawara K, Tateishi T. Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol. 2006;61:538–44. doi:10.1111/j.1365-2125.2006.02613.x.

    Article  PubMed  CAS  Google Scholar 

  10. Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27:866–71.

    PubMed  CAS  Google Scholar 

  11. Matsushima S, Maeda K, Ishiguro N, Igarashi T, and Sugiyama Y. Investigation of the inhibitory effects of various drugs on the hepatic uptake of fexofenadine in humans. Drug Metab Dispos (2008).

  12. Shimizu M, Fuse K, Okudaira K, Nishigaki R, Maeda K, Kusuhara H, et al. Contribution of OATP (organic anion-transporting polypeptide) family transporters to the hepatic uptake of fexofenadine in humans. Drug Metab Dispos. 2005;33:1477–81. doi:10.1124/dmd.105.004622.

    Article  PubMed  CAS  Google Scholar 

  13. Tucker GT, Houston JB, Huang SM. Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential–towards a consensus. Br J Clin Pharmacol. 2001;52:107–17. doi:10.1046/j.0306-5251.2001.temp.1441.x.

    Article  PubMed  CAS  Google Scholar 

  14. Shon JH, Yoon YR, Hong WS, Nguyen PM, Lee SS, Choi YG, et al. Effect of itraconazole on the pharmacokinetics and pharmacodynamics of fexofenadine in relation to the MDR1 genetic polymorphism. Clin Pharmacol Ther. 2005;78:191–201. doi:10.1016/j.clpt.2005.04.012.

    Article  PubMed  CAS  Google Scholar 

  15. Zhou S, Chan E, Pan SQ, Huang M, Lee EJ. Pharmacokinetic interactions of drugs with St John's wort. J Psychopharmacol. 2004;18:262–76. doi:10.1177/0269881104042632.

    Article  PubMed  CAS  Google Scholar 

  16. Lemma GL, Wang Z, Hamman MA, Zaheer NA, Gorski JC, Hall SD. The effect of short- and long-term administration of verapamil on the disposition of cytochrome P450 3A and P-glycoprotein substrates. Clin Pharmacol Ther. 2006;79:218–30. doi:10.1016/j.clpt.2005.11.001.

    Article  PubMed  CAS  Google Scholar 

  17. Yasui-Furukori N, Uno T, Sugawara K, Tateishi T. Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin Pharmacol Ther. 2005;77:17–23. doi:10.1016/j.clpt.2004.08.026.

    Article  PubMed  CAS  Google Scholar 

  18. Tian X, Zamek-Gliszczynski MJ, Li J, Bridges AS, Nezasa K, Patel NJ, et al. Multidrug resistance-associated protein 2 is primarily responsible for the biliary excretion of fexofenadine in mice. Drug Metab Dispos. 2008;36:61–4. doi:10.1124/dmd.107.017319.

    Article  PubMed  Google Scholar 

  19. Matsushima S, Maeda K, Hayashi H, Debori Y, Schinkel AH, Schuetz JD, Kusuhara H, and Sugiyama Y. Involvement of multiple efflux transporters in hepatic disposition of fexofenadine. Mol Pharmacol (2008).

  20. Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, Thompson RJ. The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology. 2002;123:1649–58. doi:10.1053/gast.2002.36591.

    Article  PubMed  CAS  Google Scholar 

  21. Hirano M, Maeda K, Hayashi H, Kusuhara H, Sugiyama Y. Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J Pharmacol Exp Ther. 2005;314:876–82. doi:10.1124/jpet.105.084830.

    Article  PubMed  CAS  Google Scholar 

  22. Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lan LB, et al. Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol. 2000;57:24–35.

    PubMed  CAS  Google Scholar 

  23. Hoffmannand U, Kroemer HK. The ABC transporters MDR1 and MRP2: multiple functions in disposition of xenobiotics and drug resistance. Drug Metab Rev. 2004;36:669–701. doi:10.1081/DMR-200033473.

    Article  Google Scholar 

  24. Kawabata S, Oka M, Shiozawa K, Tsukamoto K, Nakatomi K, Soda H, et al. Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem Biophys Res Commun. 2001;280:1216–23. doi:10.1006/bbrc.2001.4267.

    Article  PubMed  CAS  Google Scholar 

  25. Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem. 2003;278:22644–9. doi:10.1074/jbc.M212399200.

    Article  PubMed  CAS  Google Scholar 

  26. Merino G, Jonker JW, Wagenaar E, van Herwaarden AE, Schinkel AH. The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Mol Pharmacol. 2005;67:1758–64. doi:10.1124/mol.104.010439.

    Article  PubMed  CAS  Google Scholar 

  27. Fattinger K, Funk C, Pantze M, Weber C, Reichen J, Stieger B, et al. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther. 2001;69:223–31. doi:10.1067/mcp. 2001.114667.

    Article  PubMed  CAS  Google Scholar 

  28. Gatmaitan ZC, Nies AT, Arias IM. Regulation and translocation of ATP-dependent apical membrane proteins in rat liver. Am J Physiol. 1997;272:G1041–9.

    PubMed  CAS  Google Scholar 

  29. Kipp H, Pichetshote N, Arias IM. Transporters on demand: intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. J Biol Chem. 2001;276:7218–24. doi:10.1074/jbc.M007794200.

    Article  PubMed  CAS  Google Scholar 

  30. Dresser GK, Bailey DG, Leake BF, Schwarz UI, Dawson PA, Freeman DJ, et al. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther. 2002;71:11–20. doi:10.1067/mcp.2002.121152.

    Article  PubMed  CAS  Google Scholar 

  31. LeCluyse EL, Bullock PL, Parkinson A, Hochman JH. Cultured rat hepatocytes. Pharm Biotechnol. 1996;8:121–59.

    CAS  Google Scholar 

  32. Liu X, LeCluyse EL, Brouwer KR, Gan LS, Lemasters JJ, Stieger B, et al. Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration. Am J Physiol. 1999;277:G12–21.

    PubMed  CAS  Google Scholar 

  33. Chandra P, Johnson BM, Zhang P, Pollack GM, Brouwer KL. Modulation of hepatic canalicular or basolateral transport proteins alters hepatobiliary disposition of a model organic anion in the isolated perfused rat liver. Drug Metab Dispos. 2005;33:1238–43. doi:10.1124/dmd.105.003665.

    Article  PubMed  CAS  Google Scholar 

  34. Wilson ZE, Rostami-Hodjegan A, Burn JL, Tooley A, Boyle J, Ellis SW, et al. Inter-individual variability in levels of human microsomal protein and hepatocellularity per gram of liver. Br J Clin Pharmacol. 2003;56:433–40. doi:10.1046/j.1365-2125.2003.01881.x.

    Article  PubMed  CAS  Google Scholar 

  35. Daviesand B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10:1093–5. doi:10.1023/A:1018943613122.

    Article  Google Scholar 

  36. Drescher S, Schaeffeler E, Hitzl M, Hofmann U, Schwab M, Brinkmann U, et al. MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br J Clin Pharmacol. 2002;53:526–34. doi:10.1046/j.1365-2125.2002.01591.x.

    Article  PubMed  CAS  Google Scholar 

  37. Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther. 2001;70:189–99. doi:10.1067/mcp. 2001.117412.

    Article  PubMed  CAS  Google Scholar 

  38. Niemi M, Kivisto KT, Hofmann U, Schwab M, Eichelbaum M, Fromm MF. Fexofenadine pharmacokinetics are associated with a polymorphism of the SLCO1B1 gene (encoding OATP1B1). Br J Clin Pharmacol. 2005;59:602–4. doi:10.1111/j.1365-2125.2005.02354.x.

    Article  PubMed  CAS  Google Scholar 

  39. Annaert PP, Turncliff RZ, Booth CL, Thakker DR, Brouwer KLR. P-glycoprotein-mediated in vitro biliary excretion in sandwich-cultured rat hepatocytes. Drug Metab Dispos. 2001;29:1277–83.

    PubMed  CAS  Google Scholar 

  40. Bi YA, Kazolias D, Duignan DB. Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab Dispos. 2006;34:1658–65. doi:10.1124/dmd.105.009118.

    Article  PubMed  CAS  Google Scholar 

  41. Tian X, Swift B, Zamek-Gliszczynski MJ, Belinsky MG, Kruh GD, Brouwer KLR. Impact of basolateral multidrug resistance-associated protein (Mrp) 3 and Mrp4 on the hepatobiliary disposition of fexofenadine in perfused mouse livers. Drug Metab Dispos. 2008;36:911–5. doi:10.1124/dmd.107.019273.

    Article  PubMed  CAS  Google Scholar 

  42. Xiong H, Turner KC, Ward ES, Jansen PL, Brouwer KL. Altered hepatobiliary disposition of acetaminophen glucuronide in isolated perfused livers from multidrug resistance-associated protein 2-deficient TR(-) rats. J Pharmacol Exp Ther. 2000;295:512–8.

    PubMed  CAS  Google Scholar 

  43. Milne RW, Larsen LA, Jorgensen KL, Bastlund J, Stretch GR, Evans AM. Hepatic disposition of fexofenadine: influence of the transport inhibitors erythromycin and dibromosulphothalein. Pharm Res. 2000;17:1511–5. doi:10.1023/A:1007609225851.

    Article  PubMed  CAS  Google Scholar 

  44. Treiber A, Schneiter R, Delahaye S, Clozel M. Inhibition of organic anion transporting polypeptide-mediated hepatic uptake is the major determinant in the pharmacokinetic interaction between bosentan and cyclosporin A in the rat. J Pharmacol Exp Ther. 2004;308:1121–9. doi:10.1124/jpet.103.061614.

    Article  PubMed  CAS  Google Scholar 

  45. Treiber A, Schneiter R, Hausler S, Stieger B. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab Dispos. 2007;35:1400–7. doi:10.1124/dmd.106.013615.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors would like to thank Arlene S. Bridges, Ph. D. for her analytical support, and Yiwei Rong, for her technical expertise in the isolation of human hepatocytes. This research was supported by a grant from the National Institutes of Health (R01 GM41935). Brandon Swift is supported by an Eli Lilly predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim L. R. Brouwer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swift, B., Tian, X. & Brouwer, K.L.R. Integration of Preclinical and Clinical Data with Pharmacokinetic Modeling and Simulation to Evaluate Fexofenadine as a Probe for Hepatobiliary Transport Function. Pharm Res 26, 1942–1951 (2009). https://doi.org/10.1007/s11095-009-9909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9909-z

KEY WORDS

Navigation