Skip to main content

Advertisement

Log in

Physicochemical Selectivity of the BBB Microenvironment Governing Passive Diffusion—Matching with a Porcine Brain Lipid Extract Artificial Membrane Permeability Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To mimic the physicochemical selectivity of the blood-brain barrier (BBB) and to predict its passive permeability using a PAMPA model based on porcine brain lipid extract (PBLE 10%w/v in alkane).

Methods

Three PAMPA (BD pre-coated and PBLE with 2 different lipid volumes) models were tested with 108 drugs. Abraham solvation descriptors were used to interpret the in vitro-in vivo correlation with 282 in situ brain perfusion measurements, spanning over 5 orders of magnitude. An in combo PAMPA model was developed from combining measured PAMPA permeability with one H-bond descriptor.

Results

The in combo PAMPA predicted 93% of the variance of 197 largely efflux-inhibited in situ permeability training set. The model was cross-validated by the “leave-many-out” procedure, with q2 = 0.92 ± 0.03. The PAMPA models indicated the presence of paramembrane water channels. Only the PBLE-based PAMPA-BBB model with sufficient lipid to fill all the internal pore space of the filter showed a wide dynamic range window, selectivity coefficient near 1, and was suitable for predicting BBB permeability.

Conclusion

BBB permeability can be predicted by in combo PAMPA. Its speed and substantially lower cost, compared to in vivo measurements, make it an attractive first-pass screening method for BBB passive permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

(ε/δ)2 :

porosity of paramembrane aqueous pores divided by the length of the water-filled channels in thin PAMPA-BBB membranes (δ ~0.01 cm)

ABL:

aqueous boundary layer—thin stagnant layer adjacent to the surface of a membrane

BLM:

bilayer lipid membrane, unilamellar barrier formed from egg lecithin

Daq :

aqueous diffusivity (cm2·s−1)

DRW:

dynamic range window: DRW = log PABL-log Ppara

hABL :

ABL thickness (cm)

in combo :

methodology where a measured property (e.g., PAMPA permeability coefficient) is aditively “combined” with a calculated (in silico) descriptor (e.g., H-bond potential)

PABL :

ABL permeability coefficient (cm·s−1): PABL = Daq / hABL

Pe :

PAMPA effective permeability coefficient (cm·s−1)—the experimentally-determined value

Pm :

PAMPA transmembrane permeability (cm·s−1)—Pe corrected for ABL and aqueous pore diffusion effects; pH dependence follows Henderson-Hasselbalch equation

Po :

PAMPA intrinsic permeability coefficient of the uncharged-form of permeant; for ionizable compounds, Po = Pm (10 ±(pH–pKa) + 1), where ‘+’ for acids, ‘−’ for bases

Ppara :

PAMPA paramembrane permeability coefficient (cm·s−1)—diffusion of permeant via aqueous pores formed in the thin PAMPA-BBB membrane: Ppara = (ε/δ)2 Daq

P in situc :

BBB transendothelial permeability coefficient (cm·s−1) from in situ brain perfusion technique: P in situc  = (PS)/S, where S = microcapillary surface area = 100 cm2 g−1

P in situo :

BBB intrinsic permeability coefficient of the uncharged-form of permeant; for ionizable compounds, P in situo  = P in situc (10 ±(pH–pKa) + 1), ‘+’ for acids, ‘−’ for bases

PAMPA-BBB:

parallel artificial membrane permeability assay, based on PBLE formulation

PBLE:

porcine brain lipid extract

PS:

capillary permeability-surface area product (mL·s−1·g−1), determined from the uptake rate constant (Kin) using Crone-Renkin equation: Kin = Fpf ( 1–e –PS/Fpf ), where Fpf is the regional cerebral flow of perfusion fluid (mL·s−1·g−1)

SC:

selectivity coefficient; slope in the log-log in vitro—in vivo correlation plot

REFERENCES

  1. Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25:1737–50.

    Article  CAS  PubMed  Google Scholar 

  2. Martin I. Prediction of blood-brain barrier penetration: are we missing the point? Drug Disc Today. 2004;9:161–2.

    Article  Google Scholar 

  3. Liu X, Tu M, Kelley RS, Chen C, Smith BJ. Development of a computational approach to predict blood-brain barrier permeability. Drug Metab Disp. 2004;32:132–9.

    Article  CAS  Google Scholar 

  4. Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, et al. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther. 2005;313:1254–62.

    Article  CAS  PubMed  Google Scholar 

  5. Hitchcock SA. Blood-brain barrier permeability considerations for CNS-targeted compound library design. Curr Opin Chem Biol. 2008;12:1–6.

    Article  Google Scholar 

  6. Jeffrey P, Summerfield SG. Challenges for blood-brain barrier (BBB) screening. Xenobiotica. 2007;37:1135–51.

    Article  CAS  PubMed  Google Scholar 

  7. Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck M-P, et al. Modeling of the blood-brain barrier in drug discovery and development. Nature Rev / Drug Discov. 2007;6:650–61.

    Article  CAS  Google Scholar 

  8. Maurer TS, DeBartolo DB, Tess DA, Scott DO. Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice. Drug Metab Dispos. 2005;33:175–81.

    Article  CAS  PubMed  Google Scholar 

  9. Di L, Kerns EH, Fan K, McConnell OJ, Carter GT. High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem. 2003;38:223–32.

    Article  CAS  PubMed  Google Scholar 

  10. Di L, Kerns EH, Bezar IF, Petusky SL, Huang Y. Comparison of blood-brain barrier permeability assays: in situ brain perfusion, MDR1-MDCKII and PAMPA-BBB. J Pharm Sci 2009 (epub Oct 2008: doi: 10.1002/jps.21580).

  11. Dagenais C, Avdeef A, Tsinman O, Dudley A, Beliveau R. P-Glycoprotein deficient mouse in situ blood-brain barrier permeability and its prediction using an in combo PAMPA model. Eur J Pharm Sci. 2009;38:121–37.

    Article  CAS  PubMed  Google Scholar 

  12. Mensch J, Melis A, Mackie C, Verreck G, Brewster ME. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability. Eur J Pharm Sci. 2010;74:495–502.

    CAS  Google Scholar 

  13. Avdeef A, Artursson P, Neuhoff S, Lazorova L, Gråsjö J, Tavelin S. Caco-2 permeability of weakly basic drugs predicted with the Double-Sink PAMPA pK fluxa method. Eur J Pharm Sci. 2005;24:333–49.

    Article  CAS  PubMed  Google Scholar 

  14. Avdeef A, Tsinman O. PAMPA—a drug absorption in vitro model. 13. Chemical selectivity due to membrane hydrogen bonding: in combo comparisons of HDM-, DOPC-, and DS-PAMPA. Eur J Pharm Sci. 2006;28:43–50.

    Article  CAS  PubMed  Google Scholar 

  15. Clark DE. In silico prediction of blood-brain barrier permeation. Drug Discov Today. 2003;8:927–33.

    Article  CAS  PubMed  Google Scholar 

  16. Abraham MH. The factors that influence permeation across the blood-brain barrier. Eur J Med Chem. 2004;39:235–40.

    Article  CAS  PubMed  Google Scholar 

  17. Lanevskij K, Japertas P, Didziapetris R, Petrauskas A. Ionization-specific prediction of blood-brain barrier permeability. J Pharm Sci. 2008;98:122–34.

    Article  Google Scholar 

  18. Bendels S, Kansy M, Wagner B, Huwyler J. In silico prediction of brain and CSF permeation of small molecules using PLS regression models. Eur J Med Chem. 2008;43:1581–92.

    Article  CAS  PubMed  Google Scholar 

  19. Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980;23:682–4.

    Article  CAS  PubMed  Google Scholar 

  20. Bodor N, Buchwald P. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Adv Drug Deliv Rev. 1998;36:227–54.

    Google Scholar 

  21. Young RC, Mitchell RC, Brown TH, Ganellin CR, Griffiths R, Jones M, et al. Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J Med Chem. 1988;31:565–71.

    Article  Google Scholar 

  22. Xiang T-X, Anderson BD. Substituent contributions to the transport of substituted p-toluic acids across lipid bilayer membranes. J Pharm Sci. 1994;83:1511–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mayer PT, Anderson BD. Transport across 1, 9-decadiene precisely mimics the chemical selectivity of the barrier domain in egg lecithin bilayers. J Pharm Sci. 2002;91:640–6.

    Article  CAS  PubMed  Google Scholar 

  24. Gumbleton M, Audus KL. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J Pharm Sci. 2001;90:1681–98.

    Article  CAS  PubMed  Google Scholar 

  25. Terasaki T, Ohtsuki S, Hori S, Takanaga H, Nakashima E, Hosoya K-I. New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov Today. 2003;8:944–54.

    Article  CAS  PubMed  Google Scholar 

  26. Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, et al. In vitro models for the blood-brain barrier. Toxicol In Vitro. 2005;19:299–334.

    Article  CAS  PubMed  Google Scholar 

  27. Abbott NJ. In vitro models for examining and predicting brain uptake of drugs. In: Testa B, van de Waterbeemd H, editors. Comprehensive medicinal chemistry II, Vol. 5: ADME-Tox approaches. Amsterdam: Elsevier; 2007. p. 301–20.

    Chapter  Google Scholar 

  28. Avdeef A. How well can in vitro brain microcapillary endothelial cell models predict in vivo blood-brain barrier permeability? Eur J Pharm Sci 2010; under review.

  29. Takasato Y, Rapoport SI, Smith QR. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol. 1984;247:H484–93.

    CAS  PubMed  Google Scholar 

  30. Tanaka H, Mizojiri K. Drug-protein binding and blood-brain barrier permeability. J Pharmacol Exp Ther. 1999;288:912–8.

    CAS  PubMed  Google Scholar 

  31. Dagenais C, Rousselle C, Pollack GM, Scherrmann J-M. Development of an in situ mouse brain perfusion model and its application to mdr1a P-glycoprotein-deficient mice. J Cereb Blood Flow Metab. 2000;20:381–6.

    Article  CAS  PubMed  Google Scholar 

  32. Murakami H, Takanaga H, Matsuo H, Ohtani H, Sawada Y. Comparison of blood-brain barrier permeability in mice and rats using in situ brain perfusion technique. Am J Physiol Heart Circ Physiol. 2000;279:H1022–9.

    CAS  PubMed  Google Scholar 

  33. Cisternino S, Rousselle C, Dagenais C, Scherrmann J-M. Screening of multidrug-resistence sensitive drugs by in situ brain perfusion in P-glycoprotein deficient mice. Pharm Res. 2001;18:183–90.

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Tu M, Kelley RS, Chen C, Smith BJ. Development of a computational approach to predict blood-brain barrier permeability. Drug Metab Disp. 2004;32:132–9.

    Article  CAS  Google Scholar 

  35. Summerfield SG, Read K, Begley DJ, Obradovic T, Hidalgo IJ, Coggon S, et al. Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther. 2007;322:205–13.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, et al. Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substate efflux at the blood-brain barrier. Drug Metab Dispos. 2009;37:1251–8.

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Murawski A, Patel K, Crespi CL, Balimane PV. A novel design of artificial membrane for improving the PAMPA model. Pharm Res. 2008;25:1511–20.

    Article  CAS  PubMed  Google Scholar 

  38. Avdeef A. Absorption and drug development. Hoboken: Wiley-Interscience; 2003. p. 116–246.

    Book  Google Scholar 

  39. Tam KY, Avdeef A, Tsinman O, Sun N. The permeation of amphoteric drugs through artificial membranes—an in combo absorption model based on paracellular and transmembrane permeability. J Med Chem. 2010;53:392–401.

    Article  CAS  PubMed  Google Scholar 

  40. Avdeef A, Bucher JJ. Accurate measurements of the concentration of hydrogen ions with a glass electrode: calibrations using the Prideaux and other universal buffer solutions and a computer-controlled automatic titrator. Anal Chem. 1978;50:2137–42.

    Article  CAS  Google Scholar 

  41. Avdeef A, Nielsen P, Tsinman O. PAMPA—a drug absorption in vitro model. 11. Matching the in vivo aqueous boundary layer by individual-well stirring in microtitre plates. Eur J Pharm Chem. 2004;22:365–74.

    CAS  Google Scholar 

  42. Ruell JA, Tsinman KL, Avdeef A. PAMPA—a drug absorption in vitro model. 5. Unstirred water layer in iso-pH mapping assays and pK fluxa —optimized design (pOD-PAMPA). Eur J Pharm Sci. 2003;20:393–402.

    Article  CAS  PubMed  Google Scholar 

  43. Avdeef A. Leakiness and size exclusion of paracellular channels in cultured epithelial cell monolayers—interlaboratory comparison. Pharm Res. 2010;27:480–9.

    Article  CAS  PubMed  Google Scholar 

  44. Avdeef A, Tam KY. How well can the Caco-2/MDCK models predict effective human jejunal permeability? J Med Chem. 2010;53:3566–84.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao R, Kalvass JC, Pollack GM. Assessment of blood-brain barrier permeability using the in situ mouse brain perfusion technique. Pharm Res 2009 (in press) doi:10.1007/S1105-009-9876-4.

  46. Bendels S, Tsinman O, Wagner B, Lipp D, Parrilla I, Kansy M, et al. PAMPA—Excipient classification gradient maps. Pharm Res. 2006;23:2525–35.

    Article  CAS  PubMed  Google Scholar 

  47. Osterberg T, Svensson M, Lundahl P. Chromatographic retention of drug molecules on immobilized liposomes prepared from egg phospholipids and fro chemically pure phospholipids. Eur J Pharm Sci. 2001;12:427–39.

    Article  CAS  PubMed  Google Scholar 

  48. Beckett AH. Analgesics and their antagonists: some steric and chemical considerations. I. The dissociation constants of some tertiary amines and synthetic analgesics, the conformations of methadone-type compounds. J Pharm Pharmacol. 1956;8:848–59.

    CAS  PubMed  Google Scholar 

  49. Hansen B. Acta Chem Scand. 1958;12:324.

    Article  CAS  Google Scholar 

  50. Ogston AG. Constitution of the purine nucleosides. Part III. Potenitiometric determination of the dissociation constant of methylated xanthenes. J Chem Soc 1935; 1376-79.

  51. Dagenais C, Graff CL, Pollack GM. Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol. 2004;67:269–76.

    Article  CAS  PubMed  Google Scholar 

  52. Obradovic T, Dobson GG, Shingaki T, Kungu T, Hidalgo IJ. Assessment of the first and second generation antihistamines brain penetration and the role of P-glycoprotein. Pharm Res. 2007;24:318–27.

    Article  CAS  PubMed  Google Scholar 

  53. Liu X, Tu M, Kelley RS, Chen C, Smith BJ. Development of a computational approach to predict blood-brain barrier permeability. Drug Metab Disp. 2004;32:132–9.

    Article  CAS  Google Scholar 

  54. Fenstermacher JD. Pharmacology of the BBB. In: Neuwelt EA, editor. Implications of the BBB and its Manipulation, vol. 1. Plenum: New York; 1989. p. 137–55.

    Google Scholar 

  55. Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med. 2004;36:592–604.

    Article  CAS  PubMed  Google Scholar 

  56. Dagenais C. Blood-brain barrier transport of opioids and selected substrates: variable modulation of brain uptake by P-glycoprotein and countervectorial transport systems for the model opioid peptide [D-Pen2,5]-Enkephalin. PhD Dissertation. Univ. of North Carolina, 2000.

  57. Cisternino S, Rousselle C, Debray M, Scherrmann J-M. In situ transport of vinblastine and selected P-glycoprotein substances: implications for drug-drug interactions at the mouse blood-brain barrier. Pharm Res. 2004;21:1382–9.

    Article  CAS  PubMed  Google Scholar 

  58. Cisternino S, Rousselle C, Debray M, Scherrmann J-M. In vivo saturation of the transport of vinblastine and colchicines by P-glycoprotein at the rat blood-brain barrier. Pharm Res. 2003;20:1607–11.

    Article  CAS  PubMed  Google Scholar 

  59. Pardridge WM, Mietus LJ. Transport of steroid hormones through the rat blood-brain barrier. J Clin Invest. 1979;64:145–54.

    Article  CAS  PubMed  Google Scholar 

  60. Cornford EM. The BBB, a dopamine regulatory interface. Physiol. 1985;7:219–59.

    CAS  Google Scholar 

  61. Qaiser MZ. in preparation (digitized from Fig. 12 in ref 55).

  62. Cisternino S, Rousselle C, Lorico A, Rappa G, Scherrmann J-M. Apparent lack of mrp1-mediated efflux at the luminal side of mouse blood-brain barrier endothelial cells. Pharm Res. 2003;20:904–9.

    Article  CAS  PubMed  Google Scholar 

  63. Parepally JMR, Mandula H, Smith QR. Brain uptake of nonsteroidal anti-inflammatory drugs: ibuprofen, flurbiprofen, and indomethacin. Pharm Res. 2006;23:873–81.

    Article  CAS  PubMed  Google Scholar 

  64. Bihorel S, Camenisch G, Lemaire M, Scherrmann J-M. Modulation of the brain distribution of imatinib and its metabolites in mice by valspodar, zosuquidar and elacridar. Pharm Res. 2007;24:1720–8.

    Article  CAS  PubMed  Google Scholar 

  65. Avdeef A, Tsinman O, Sun N. Unpublished data.

  66. Pardridge WM, Triguero D, Yang J, Cancilla PA. Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier. J Pharmacol Exp Ther. 1990;253:884–91.

    CAS  PubMed  Google Scholar 

  67. Greig NH, Momma S, Sweeney DJ, Smith QR, Rapoport SI. Facilitated transport of melphalan at the rat blood-brain barrier by the large neutral amino acid carrier system. Cancer Res. 1987;47:1571–6.

    CAS  PubMed  Google Scholar 

  68. Bickel U, Schumacher OP, Kang Y-S, Voigt K. Poor permeability of morphine 3-glucuronide and morphine 6-glucuronide through the blood-brain barrier in the rat. J Pharmacol Exp Ther. 1996;278:107–13.

    CAS  PubMed  Google Scholar 

  69. Dagenais C, Zong J, Ducharme J, Pollack GM. Effect of mdr1a P-glycoprotein gene disruption, gender, and substrate concentration on brain uptake of selected compounds. Pharm Res. 2001;18:957–63.

    Article  CAS  PubMed  Google Scholar 

  70. Smith Q. Private correspondence. 2004.

  71. Okura T, Hattori A, Takano Y, Sato T, Hammarlund-Udanenaes M, Terasaki T, et al. Involvement of the pyrilamine transporter, a putative organic cation transporter, in blood-brain barrier transport of oxycodone. Drug Metab Disp. 2008;36:2005–13.

    Article  CAS  Google Scholar 

  72. Cisternino S, Mercier C, Bourasset F, Rouse F, Scherrmann J-M. Expression, up-regulation, and tranport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res. 2004;64:3296–301.

    Article  CAS  PubMed  Google Scholar 

  73. Gratton JA, Abraham MH, Bradbury MW, Schadka H. Molecular factors influencing drug transfer across the blood-brain barrier. J Pharm Pharmacol. 1997;49:1211–6.

    CAS  PubMed  Google Scholar 

  74. Yamazaki M, Fukuoka H, Nagata O, Kato H, Ito Y, Terasaki T, et al. Transport mechanism of an H1-antagonist at the blood-brain barrier: transport mechanism of mepyramine using the carotid injection technique. Biol Pharm Bull. 1994;17:676–9.

    CAS  PubMed  Google Scholar 

  75. Chen W, Yang JZ, Anderson R, Nielsen LH, Borchardt RT. Evaluation of the permeability characteristics of a model opioid peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH (DADLE), and its cyclic prodrugs across the blood-brain barrier using an in situ perfused rat brain model. J Pharmacol Exp Ther. 2002;303:849–57.

    Article  CAS  PubMed  Google Scholar 

  76. Zhao R, Kalvass JC, Yanni SB, Bridges AS, Pollack GM. Fexofenadine brain exposure and the influence of blood-brain barrier P-glycoprotein after fexofenadine and terfenadine administration. Drug Metab Dispos. 2009;37:529–35.

    Article  CAS  PubMed  Google Scholar 

  77. Greig NH, Soncrant T, Shetty HU, Momma S, Smith QR, Rapoport SI. Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother Pharmacol. 1990;26:263–8.

    Article  CAS  PubMed  Google Scholar 

  78. Bradbury MWB, Patlak CS, Oldendorf WH. Analysis of brain uptake and loss of radiotracers after intracarotid injection. Am J Physiol. 1975;229:1110–5.

    CAS  PubMed  Google Scholar 

  79. Levin VA, Landahl HD, Freeman-Dove MA. The application of brain capillary permeability coefficient measurements to pathological conditions and the selection of agents which cross the blood-brain barrier. J Pharmacokinet Biopharm. 1976;4:499–519.

    Article  CAS  PubMed  Google Scholar 

  80. Abbott NJ. Prediction of blood-brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov Today: Technol. 2004;1:407–16.

    Article  CAS  Google Scholar 

  81. Rapoport SI, Ohno K, Pettigrew KD. Drug entry into brain. Brain Res. 1979;172:354–9.

    Article  CAS  PubMed  Google Scholar 

  82. Rousselle C, Clair P, Lefauconnier J-M, Kaczorek M, Scherrmann J-M. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol. 2000;57:679–86.

    CAS  PubMed  Google Scholar 

  83. Guillot F, Misslin P, Lemaire M. Comparison of fluvastatin and lovastatin blood-brain barrier transfer using in vitro and in vivo methods. J Cardiovasc Pharmacol. 1993;21:339–46.

    Article  CAS  PubMed  Google Scholar 

  84. Rice A, Liu Y, Michaelis ML, Himes RH, Georg GI, Audus KL. Chemical modification of paclitaxel increases permeation across the blood-brain barrier in vitro and in situ. J Med Chem. 2005;48:832–8.

    Article  CAS  PubMed  Google Scholar 

  85. Cornford EM, Diep CP, Pardridge WM. Blood-brain barrier transport of valproic acid. J Neurochem. 1985;44:1541–50.

    Article  CAS  PubMed  Google Scholar 

  86. Adkinson KD, Shen DD. Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. J Pharmacol Exp Ther. 1996;276:1189–200.

    Google Scholar 

  87. Wu D, Clement JG, Pardridge WM. Low blood-brain barrier permeability to azidothumidine (AZT), 3TC, and thymidine in the rat. Brain Res. 1998;791:313–6.

    Article  CAS  PubMed  Google Scholar 

  88. Nielsen P, Avdeef A. PAMPA—a drug absorption in vitro model. 8. Apparent filter porosity and the unstirred water layer. Eur J Pharm Sci. 2004;22:33–41.

    Article  CAS  PubMed  Google Scholar 

  89. Crivori P, Cruciani G, Carrupt P-A, Testa B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J Med Chem. 2000;43:2204–16.

    Article  CAS  PubMed  Google Scholar 

  90. Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002;303:1029–37.

    Article  PubMed  Google Scholar 

  91. Fischer H, Gottschlich R, Seelig A. Blood-brain barrier permeation: molecular parameters governing passive diffusion. J Membrane Biol. 1998;165:201–11.

    Article  CAS  Google Scholar 

  92. Platts JA, Abraham MH, Zhao YH, Hersey A, Ijaz L, Butina D. Correlation and prediction of a large blood-brain barrier distribution set—a LFER study. Eur J Med Chem. 2001;36:719–30.

    Article  CAS  PubMed  Google Scholar 

  93. Usansky HH, Sinko PJ. Computation of log BB values for compounds transported through carrier-mediated mechanisms using in vitro permeability data from brain microvessel endothelial cell (BMEC) monolayers. Pharm Res. 2003;20:390–6.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang L, Zhu H, Oprea TI, Golbraikh A, Tropsha A. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharm Res. 2008;25:1902–14.

    Article  CAS  PubMed  Google Scholar 

  95. Walter A, Gutknecht J. Monocarboxylic acid permeation through lipid bilayer membranes. J Membrane Biol. 1984;77:255–64.

    Article  CAS  Google Scholar 

  96. Walter A, Gutknecht J. Permeability of small nonelectrolytes through lipid bilyar membranes. J Membrane Biol. 1986;90:207–17.

    Article  CAS  Google Scholar 

  97. Thompson M, Lennox RB, McClelland RA. Structure and electrochemical properties of microfiltration filter-lipid membrane systems. Anal Chem. 1982;54:76–81.

    Article  CAS  Google Scholar 

  98. Abraham MH, Ibrahim A, Zissimos AM, Zhao YH, Comer J, Reynolds DP. Application of hydrogen bonding calculations in property based drug design. Drug Disc Today. 2002;7:1056–63.

    Article  CAS  Google Scholar 

  99. Abraham MH, Takács-Novák K, Mitchell RC. On the partition of ampholytes: application to blood-brain barrier distribution. J Pharm Sci. 1997;86:310–5.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Part of this work was supported by Grant Number R44MH75211 from the National Institutes of Health (to pION). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Avdeef.

Additional information

The current article is contribution number 30 in the Drug Absorption in vitro Model series from pION. Ref. 28 is part 29 in the series.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsinman, O., Tsinman, K., Sun, N. et al. Physicochemical Selectivity of the BBB Microenvironment Governing Passive Diffusion—Matching with a Porcine Brain Lipid Extract Artificial Membrane Permeability Model. Pharm Res 28, 337–363 (2011). https://doi.org/10.1007/s11095-010-0280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0280-x

KEY WORDS

Navigation