Skip to main content

Advertisement

Log in

Novel Tubulin Polymerization Inhibitors Overcome Multidrug Resistance and Reduce Melanoma Lung Metastasis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate abilities of 2-aryl-4-benzoyl-imidazoles (ABI) to overcome multidrug resistance (MDR), define their cellular target, and assess in vivo antimelanoma efficacy.

Methods

MDR cell lines that overexpressed P-glycoprotein, MDR-associated proteins, and breast cancer resistance protein were used to evaluate ABI ability to overcome MDR. Cell cycle analysis, molecular modeling, and microtubule imaging were used to define ABI cellular target. SHO mice bearing A375 human melanoma xenograft were used to evaluate ABI in vivo antitumor activity. B16-F10/C57BL mouse melanoma lung metastasis model was used to test ABI efficacy to inhibit tumor lung metastasis.

Results

ABIs showed similar potency to MDR cells compared to matching parent cells. ABIs were identified to target tubulin on the colchicine binding site. After 31 days of treatment, ABI-288 dosed at 25 mg/kg inhibited melanoma tumor growth by 69%; dacarbazine at 60 mg/kg inhibited growth by 52%. ABI-274 dosed at 25 mg/kg showed better lung metastasis inhibition than dacarbazine at 60 mg/kg.

Conclusions

This new class of antimitotic compounds can overcome several clinically important drug resistant mechanisms in vitro and are effective in inhibiting melanoma lung metastasis in vivo, supporting their further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

μM:

micromolar per liter

ABI:

2-aryl-4-benzoyl-imidazole compounds

BCRP:

breast cancer resistance protein

DAMA-colchicine:

N-deacetyl-N-(2-mercaptoacetyl)-colchicine

DMSO:

dimethyl sulphoxide

DTIC:

dacarbazine

FBS:

fetal bovine serum

HMEC:

human microvascular endothelial cells

MDR:

multidrug resistant

MRP:

MDR associated proteins

MTD:

maximum tolerable dose

nM:

nanomolar per liter

SAR:

structure-activity relationship

SCID:

severe combined immunodeficiency

SHO mice:

double homozygous SCID hairless outbreed mice

SMART:

substituted methoxylbenzoyl-aryl-thiazole

SPA:

scintillation proximity assay

SRB:

sulforhodamine B

TGI:

tumor growth inhibition

REFERENCES

  1. Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445:851–7.

    Article  PubMed  CAS  Google Scholar 

  2. Serrone L, Zeuli M, Sega FM, Cognetti F. Dacarbazine-based chemotherapy for metastatic melanoma: thirty-year experience overview. J Exp Clin Cancer Res. 2000;19:21–34.

    PubMed  CAS  Google Scholar 

  3. Mandara M, Nortilli R, Sava T, Cetto GL. Chemotherapy for metastatic melanoma. Expert Rev Anticancer Ther. 2006;6:121–30.

    Article  PubMed  CAS  Google Scholar 

  4. Li W, Lu Y, Wang Z, Dalton JT, Miller DD. Synthesis and antiproliferative activity of thiazolidine analogs for melanoma. Bioorg Med Chem Lett. 2007;17:4113–7.

    Article  PubMed  CAS  Google Scholar 

  5. Eggermontand AM, Robert C. New drugs in melanoma: it's a whole new world. Eur J Cancer. 2011;47:2150–7.

    Article  Google Scholar 

  6. Kahlerand KC, Hauschild A. Treatment and side effect management of CTLA-4 antibody therapy in metastatic melanoma. J Dtsch Dermatol Ges. 2011;9:277–86.

    Google Scholar 

  7. Roukos DH. PLX4032 and melanoma: resistance, expectations and uncertainty. Expert Rev Anticancer Ther. 2011;11:325–8.

    Article  PubMed  CAS  Google Scholar 

  8. Lu Y, Li CM, Wang Z, Ross 2nd CR, Chen J, Dalton JT, Li W, Miller DD. Discovery of 4-substituted methoxybenzoyl-aryl-thiazole as novel anticancer agents: synthesis, biological evaluation, and structure-activity relationships. J Med Chem. 2009;52:1701–11.

    Article  PubMed  CAS  Google Scholar 

  9. Chen J, Wang Z, Li C-M, Lu Y, Vaddadya PK, Meibohma B, Dalton JT, Miller DD, Li W. Discovery of novel 2-aryl-4-benzoyl-imidazoles targeting the colchicines binding site in tubulin as potential anticancer agents. J Med Chem. 2010;53:7414–27.

    Article  PubMed  CAS  Google Scholar 

  10. Fox E, Maris JM, Widemann BC, Goodspeed W, Goodwin A, Kromplewski M, Fouts ME, Medina D, Cohn SL, Krivoshik A, Hagey AE, Adamson PC, Balis FM. A phase I study of ABT-751, an orally bioavailable tubulin inhibitor, administered daily for 21 days every 28 days in pediatric patients with solid tumors. Clin Cancer Res. 2008;14:1111–5.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang F, Michaelson JE, Moshiach S, Sachs N, Zhao W, Sun Y, Sonnenberg A, Lahti JM, Huang H, Zhang XA. Tetraspanin CD151 maintains vascular stability by balancing the forces of cell adhesion and cytoskeletal tension. Blood. 2011;118:4274–84.

    Article  PubMed  CAS  Google Scholar 

  12. Ahn S, Hwang DJ, Barrett CM, Yang J, Duke 3rd CB, Miller DD, Dalton JT. A novel bis-indole destabilizes microtubules and displays potent in vitro and in vivo antitumor activity in prostate cancer. Cancer Chemother Pharmacol. 2011;67:293–304.

    Article  PubMed  CAS  Google Scholar 

  13. Wang Z, Lu Y, Seibel W, Miller DD, Li W. Identifying novel molecular structures for advanced melanoma by ligand-based virtual screening. J Chem Inf Model. 2009;49:1420–7.

    Article  PubMed  CAS  Google Scholar 

  14. Chen J, Smith M, Kolinsky K, Adames V, Mehta N, Fritzky L, Rashed M, Wheeldon E, Linn M, Higgins B. Antitumor activity of HER1/EGFR tyrosine kinase inhibitor erlotinib, alone and in combination with CPT-11 (irinotecan) in human colorectal cancer xenograft models. Cancer Chemother Pharmacol. 2007;59:651–9.

    Article  PubMed  CAS  Google Scholar 

  15. Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-Mitotic Activity of Colchicine and the Structural Basis for Its Interaction with Tubulin. Medi Res Rev. 2008;28:155–83.

    Article  CAS  Google Scholar 

  16. Zmijewski MA, Li W, Zjawiony JK, Sweatman TW, Chen J, Miller DD, Slominski AT. Photo-conversion of two epimers (20R and 20S) of pregna-5,7-diene-3beta, 17alpha, 20-triol and their bioactivity in melanoma cells. Steroids. 2009;74:218–28.

    Article  PubMed  CAS  Google Scholar 

  17. Bazaa A, Pasquier E, Defilles C, Limam I, Kessentini-Zouari R, Kallech-Ziri O, El Battari A, Braguer D, El Ayeb M, Marrakchi N, Luis J. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions. PLoS One. 2010;5:e10124.

    Article  PubMed  Google Scholar 

  18. Tong YG, Zhang XW, Geng MY, Yue JM, Xin XL, Tian F, Shen X, Tong LJ, Li MH, Zhang C, Li WH, Lin LP, Ding J. Pseudolarix acid B, a new tubulin-binding agent, inhibits angiogenesis by interacting with a novel binding site on tubulin. Mol Pharmacol. 2006;69:1226–33.

    Article  PubMed  CAS  Google Scholar 

  19. Guo W, Wu S, Liu J, Fang B. Identification of a small molecule with synthetic lethality for K-ras and protein kinase C iota. Cancer Res. 2008;68:7403–8.

    Article  PubMed  CAS  Google Scholar 

  20. Gourdeau H, Leblond L, Hamelin B, Dong K, Ouellet F, Boudreau C, Custeau D, Richard A, Gilbert MJ, Jolivet J. Species differences in troxacitabine pharmacokinetics and pharmacodynamics: implications for clinical development. Clin Cancer Res. 2004;10:7692–702.

    Article  PubMed  CAS  Google Scholar 

  21. Povlsenand CO, Jacobsen GK. Chemotherapy of a human malignant melanoma transplanted in the nude mouse. Cancer Res. 1975;35:2790–6.

    Google Scholar 

  22. Xu L, Begum S, Hearn JD, Hynes RO. GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci U S A. 2006;103:9023–8.

    Article  PubMed  CAS  Google Scholar 

  23. Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004;428:198–202.

    Article  PubMed  CAS  Google Scholar 

  24. Salmon SE. Human tumor clonogenic assays: growth conditions and applications. Cancer Genet Cytogenet. 1986;19:21–8.

    Article  PubMed  CAS  Google Scholar 

  25. Lau DH, Xue L, Young LJ, Burke PA, Cheung AT. Paclitaxel (Taxol): an inhibitor of angiogenesis in a highly vascularized transgenic breast cancer. Cancer Biother Radiopharm. 1999;14:31–6.

    Article  PubMed  CAS  Google Scholar 

  26. Stafford SJ, Schwimer J, Anthony CT, Thomson JL, Wang YZ, Woltering EA. Colchicine and 2-methoxyestradiol Inhibit Human Angiogenesis. J Surg Res. 2005;125:104–8.

    Article  PubMed  CAS  Google Scholar 

  27. Li CM, Lu Y, Narayanan R, Miller DD, Dalton JT. Drug metabolism and pharmacokinetics of 4-substituted methoxybenzoyl-aryl-thiazoles. Drug Metab Dispos. 2010;38:2032–9.

    Article  PubMed  CAS  Google Scholar 

  28. Kidera Y, Tsubaki M, Yamazoe Y, Shoji K, Nakamura H, Ogaki M, Satou T, Itoh T, Isozaki M, Kaneko J, Tanimori Y, Yanae M, Nishida S. Reduction of lung metastasis, cell invasion, and adhesion in mouse melanoma by statin-induced blockade of the Rho/Rho-associated coiled-coil-containing protein kinase pathway. J Exp Clin Cancer Res. 2010;29:127.

    Article  PubMed  Google Scholar 

  29. Lavelle F, Gueritte-Voegelein F, Guenard D. Taxotere: from yew's needles to clinical practice. Bull Cancer. 1993;80:326–38.

    PubMed  CAS  Google Scholar 

  30. Nelson RL. The comparative clinical pharmacology and pharmacokinetics of vindesine, vincristine, and vinblastine in human patients with cancer. Med Pediatr Oncol. 1982;10:115–27.

    Article  PubMed  CAS  Google Scholar 

  31. Beerepoot LV, Radema SA, Witteveen EO, Thomas T, Wheeler C, Kempin S, Voest EE. Phase I clinical evaluation of weekly administration of the novel vascular-targeting agent, ZD6126, in patients with solid tumors. J Clin Oncol. 2006;24:1491–8.

    Article  PubMed  CAS  Google Scholar 

  32. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.

    Article  PubMed  CAS  Google Scholar 

  33. Colone M, Calcabrini A, Toccacieli L, Bozzuto G, Stringaro A, Gentile M, Cianfriglia M, Ciervo A, Caraglia M, Budillon A, Meo G, Arancia G, Molinari A. The multidrug transporter P-glycoprotein: a mediator of melanoma invasion? J Invest Dermatol. 2008;128:957–71.

    Article  PubMed  CAS  Google Scholar 

  34. Berger W, Hauptmann E, Elbling L, Vetterlein M, Kokoschka EM, Micksche M. Possible role of the multidrug resistance-associated protein (MRP) in chemoresistance of human melanoma cells. Int J Cancer. 1997;71:108–15.

    Article  PubMed  CAS  Google Scholar 

  35. Diestra JE, Scheffer GL, Catala I, Maliepaard M, Schellens JH, Scheper RJ, Germa-Lluch JR, Izquierdo MA. Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J Pathol. 2002;198:213–9.

    Article  PubMed  CAS  Google Scholar 

  36. Li CM, Wang Z, Lu Y, Ahn S, Narayanan R, Kearbey JD, Parke DN, Li W, Miller DD, Dalton JT. Biological activity of 4-substituted methoxybenzoyl-aryl-thiazole: an active microtubule inhibitor. Cancer Res. 2011;71:216–24.

    Article  PubMed  CAS  Google Scholar 

  37. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  PubMed  CAS  Google Scholar 

  38. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 1999;39:361–98.

    Article  PubMed  CAS  Google Scholar 

  39. Tahir SK, Kovar P, Rosenberg SH, Ng SC. Rapid colchicine competition-binding scintillation proximity assay using biotin-labeled tubulin. Biotechniques. 2000;29:156–60.

    PubMed  CAS  Google Scholar 

  40. Nikolinakosand P, Heymach JV. The tyrosine kinase inhibitor cediranib for non-small cell lung cancer and other thoracic malignancies. J Thorac Oncol. 2008;3:S131–134.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by the NIH/NCI Grant R01CA148706-01A1 to WL with additional partial support from GTx, Inc. (SA, CL and JTD). We thank Dr. Christina Barrett for her help in the colchicine site binding assay, Dr. Feng Zhang for capillary network formation assay, Dr. Bob M. Moore II and Dr. Steven Gurley for helping in taking microtubule images, and Dr. David Armbruster for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3444 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Chen, J., Wang, J. et al. Novel Tubulin Polymerization Inhibitors Overcome Multidrug Resistance and Reduce Melanoma Lung Metastasis. Pharm Res 29, 3040–3052 (2012). https://doi.org/10.1007/s11095-012-0726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0726-4

KEY WORDS

Navigation