Skip to main content
Log in

Knocking Down HMGB1 Using Dendrimer-Delivered siRNA Unveils Its Key Role in NMDA-Induced Autophagy in Rat Cortical Neurons

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To explore the role of the High Mobility Group Box 1 (HMGB1) protein in NMDA-mediated excitotoxicity in rat cortical neurons.

Methods

We knocked down HMGB1 using small-interfering RNA (siRNA) delivered into neurons by means of a dendrimer. We determined autophagy activation by measuring the ratio of light chain 3 protein isoforms (LC3B-I)/LC3B-II and by determining autophagolysosome labeling using the specific marker monodansyl cadaverine. Neuronal toxicity was induced by exposing the neurons to N-methyl-D-aspartate (NMDA) and it was determined by measuring Lactate dehydrogenase and MTT reduction.

Results

We found that NMDA receptor stimulation induced both neuronal death and autophagy in rat cortical neurons. In addition, NMDA also caused HMGB1 translocation from the neuronal nucleus to the cytoplasm where it formed a complex with Beclin1. HMGB1 was efficiently knocked down using a specific siRNA causing a blockade of NMDA-induced autophagy and potentiating NMDA-induced neuronal death.

Conclusions

Our study demonstrates that HMGB1 plays a relevant role in neuronal autophagy regulation and suggest a protective role of autophagy during excitotoxicity. In addition, the dendrimer that we have used here is a good vector for siRNA delivery to neurons allowing lack-of-function studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DTT:

Dithiothreitol

EGTA:

Ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′,-tetraacetic acid

HEPES:

N-2-hydroxyethylpiperazine-N′-2- ethanesulphonic acid

HMGB1:

High Mobility Group Box 1

HRP:

Horseradish peroxidase

LC3:

Microtubule-associated light chain 3

LDH:

Lactate dehydrogenase

MDC:

Monodansylcadaverine

MTT:

2,5-diphenyl-3-(4,5-dimethyl-2-thiazolyl) tetrazolium bromide

NMDA:

N-methyl-D-aspartate

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate-buffered saline

siRNA:

Small-interfering RNA

TGD:

Transgeden dendrimer

REFERENCES

  1. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717–21.

    Article  PubMed  CAS  Google Scholar 

  2. Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9(12):1004–10.

    Article  PubMed  CAS  Google Scholar 

  3. Marino G, Madeo F, Kroemer G. Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol. 2011;23(2):198–206.

    Article  PubMed  CAS  Google Scholar 

  4. Perez-Carrion MD, Perez-Martinez FC, Merino S, Sanchez-Verdu P, Martinez-Hernandez J, Lujan R, et al. Dendrimer-mediated siRNA delivery knocks down Beclin 1 and potentiates NMDA-mediated toxicity in rat cortical neurons. J Neurochem. 2012;120(2):259–68.

    Article  PubMed  CAS  Google Scholar 

  5. Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci. 2010;13(7):805–11.

    Article  PubMed  CAS  Google Scholar 

  6. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A. 1995;92(16):7162–6.

    Article  PubMed  CAS  Google Scholar 

  7. White RJ, Reynolds IJ. Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci. 1996;16(18):5688–97.

    PubMed  CAS  Google Scholar 

  8. Bossy-Wetzel E, Green DR. Assays for cytochrome c release from mitochondria during apoptosis. Methods Enzymol. 2000;32(2):235–42.

    Article  Google Scholar 

  9. Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ. 2005;12(2):162–76.

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Han R, Liang ZQ, Wu JC, Zhang XD, Gu ZL, et al. An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-D-aspartate receptor agonist kainic acid. Autophagy. 2008;4(2):214–26.

    PubMed  CAS  Google Scholar 

  11. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem. 2000;275(51):40096–105.

    Article  PubMed  CAS  Google Scholar 

  12. Huttunen HJ, Kuja-Panula J, Rauvala H. Receptor for advanced glycation end products (RAGE) signaling induces CREB-dependent chromogranin expression during neuronal differentiation. J Biol Chem. 2002;277(41):38635–46.

    Article  PubMed  CAS  Google Scholar 

  13. Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev. 2006;17(3):189–201.

    Article  PubMed  CAS  Google Scholar 

  14. Muller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A, et al. New EMBO members’ review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J. 2001;20(16):4337–40.

    Article  PubMed  CAS  Google Scholar 

  15. Hock R, Furusawa T, Ueda T, Bustin M. HMG chromosomal proteins in development and disease. Trends Cell Biol. 2007;17(2):72–9.

    Article  PubMed  CAS  Google Scholar 

  16. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med. 2000;192(4):565–70.

    Article  PubMed  CAS  Google Scholar 

  17. Tang D, Shi Y, Kang R, Li T, Xiao W, Wang H, et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol. 2007;81(3):741–7.

    Article  PubMed  CAS  Google Scholar 

  18. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5.

    Article  PubMed  CAS  Google Scholar 

  19. Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22(20):5551–60.

    Article  PubMed  CAS  Google Scholar 

  20. Tang D, Kang R, Zeh III HJ, Lotze MT. High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal. 2011;14(7):1315–35.

    Article  PubMed  CAS  Google Scholar 

  21. Aigner A. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol. 2006;124(1):12–25.

    Article  PubMed  CAS  Google Scholar 

  22. Perez-Martinez FC, Guerra J, Posadas I, Ceña V. Barriers to non-viral vector-mediated gene delivery in the nervous system. Pharm Res. 2011;28(8):1843–58.

    Article  PubMed  CAS  Google Scholar 

  23. Posadas I, Guerra FJ, Ceña V. Nonviral vectors for the delivery of small interfering RNAs to the CNS. Nanomedicine (Lond). 2010;5(8):1219–36.

    Article  CAS  Google Scholar 

  24. Rodrigo AC, Rivilla I, Perez-Martinez FC, Monteagudo S, Ocana V, Guerra J, et al. Efficient, non-toxic hybrid PPV-PAMAM dendrimer as a gene carrier for neuronal cells. Biomacromolecules. 2011;12(4):1205–13.

    Article  PubMed  CAS  Google Scholar 

  25. Posadas I, Perez-Martinez FC, Guerra J, Sanchez-Verdu P, Ceña V. Cofilin activation mediates Bax translocation to mitochondria during excitotoxic neuronal death. J Neurochem. 2012;120(4):515–27.

    Article  PubMed  CAS  Google Scholar 

  26. Lopez-Hernandez B, Posadas I, Podlesniy P, Abad MA, Trullas R, Ceña V. HIF-1alpha is neuroprotective during the early phases of mild hypoxia in rat cortical neurons. Exp Neurol. 2012;233(1):543–54.

    Article  PubMed  CAS  Google Scholar 

  27. Posadas I, Vellecco V, Santos P, Prieto-Lloret J, Ceña V. Acetaminophen potentiates staurosporine-induced death in a human neuroblastoma cell line. Br J Pharmacol. 2007;150(5):577–85.

    Article  PubMed  CAS  Google Scholar 

  28. Sagar AJ, Pandit MW. Denaturation studies on bovine pancreatic ribonuclease. Effect of trichloroacetic acid. Biochim Biophys Acta. 1983;743(3):303–9.

    Article  PubMed  CAS  Google Scholar 

  29. Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H, Mills GB, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 2005;65(8):3336–46.

    PubMed  CAS  Google Scholar 

  30. Fernandez M, Segura MF, Sole C, Colino A, Comella JX, Ceña V. Lifeguard/neuronal membrane protein 35 regulates Fas ligand-mediated apoptosis in neurons via microdomain recruitment. J Neurochem. 2007;103(1):190–203.

    PubMed  CAS  Google Scholar 

  31. Posadas I, Lopez-Hernandez B, Clemente MI, Jimenez JL, Ortega P, de la Mata J, et al. Highly efficient transfection of rat cortical neurons using carbosilane dendrimers unveils a neuroprotective role for HIF-1alpha in early chemical hypoxia-mediated neurotoxicity. Pharm Res. 2009;26(5):1181–91.

    Article  PubMed  CAS  Google Scholar 

  32. Perez-Martinez FC, Carrion B, Lucio MI, Rubio N, Herrero MA, Vazquez E, et al. Enhanced docetaxel-mediated cytotoxicity in human prostate cancer cells through knockdown of cofilin-1 by carbon nanohorn delivered siRNA. Biomaterials. 2012;33(32):8152–9.

    Article  PubMed  CAS  Google Scholar 

  33. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.

    Article  PubMed  CAS  Google Scholar 

  34. Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542–5.

    PubMed  CAS  Google Scholar 

  35. Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci. 2001;114(Pt 20):3619–29.

    PubMed  CAS  Google Scholar 

  36. Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor–still lethal after eight years. Trends Neurosci. 1995;18(2):57–8.

    Article  PubMed  CAS  Google Scholar 

  37. Lipton SA, Rosenberg PA. Excitatory amino-acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330(9):613–22.

    Article  PubMed  CAS  Google Scholar 

  38. Mattson MP. Calcium and neurodegeneration. Aging Cell. 2007;6(3):337–50.

    Article  PubMed  CAS  Google Scholar 

  39. Bustin M, Neihart NK. Antibodies against chromosomal HMG proteins stain the cytoplasm of mammalian cells. Cell. 1979;16(1):181–9.

    Article  PubMed  CAS  Google Scholar 

  40. Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi ME, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002;3(10):995–1001.

    Article  PubMed  CAS  Google Scholar 

  41. Kim JB, Sig CJ, Yu YM, Nam K, Piao CS, Kim SW, et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci. 2006;26(24):6413–21.

    Article  PubMed  CAS  Google Scholar 

  42. Sadasivan S, Zhang Z, Larner SF, Liu MC, Zheng W, Kobeissy FH, et al. Acute NMDA toxicity in cultured rat cerebellar granule neurons is accompanied by autophagy induction and late onset autophagic cell death phenotype. BMC Neurosci. 2010;1121.

  43. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.

    Article  PubMed  CAS  Google Scholar 

  44. Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev. 2007;59(2–3):75–86.

    Article  PubMed  CAS  Google Scholar 

  45. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885–9.

    Article  PubMed  CAS  Google Scholar 

  46. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 2008;118(6):2190–9.

    PubMed  CAS  Google Scholar 

  47. Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem. 2006;281(20):14474–85.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Ana B. García for her technical assistance. M.D.P-C. is a recipient of a Torres Quevedo contract from Ministerio de Ciencia e Innovación (Spain) and NanoDrugs, S.L. This work has been supported, in part, by grants PI081434 from Fondo de Investigaciones Sanitarias, BFU2011-30161-C02-01 from Ministerio de Ciencia e Innovación and PII1I09-0163-4002 and POII10-0274-3182 from Consejería de Educación, JCCM and EuronanoMed projects DENANORNA and DENPEPTHIV to V.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentín Ceña.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(DOC 99.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Carrión, M.D., Ceña, V. Knocking Down HMGB1 Using Dendrimer-Delivered siRNA Unveils Its Key Role in NMDA-Induced Autophagy in Rat Cortical Neurons. Pharm Res 30, 2584–2595 (2013). https://doi.org/10.1007/s11095-013-1049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1049-9

KEY WORDS

Navigation