Skip to main content

Advertisement

Log in

Drug Delivery Using Platelet Cancer Cell Interaction

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop an efficient biocompatible and targeted drug delivery system in which platelets, an essential blood component having a natural affinity for cancer cells, are used as carrier of anticancer drug as delivery of drug to the targeted site is crucial for cancer treatment.

Methods

Doxorubicin hydrochloride, a potent anti cancer drug, was delivered in lung adenocarcinoma cell line (A549) using platelet as a delivery agent. This delivery mode was also tested in Ehrlich ascites carcinoma (EAC) bearing mice in presence and absence of platelets.

Results

The results show that platelets can uptake the drug and release the same upon activation. The efficiency of drug loaded platelets in inducing cytotoxicity was significantly higher in both in vitro and in vivo model, as compared to the free drug.

Conclusions

The proposed drug delivery strategy may lead to clinical improvement in the management of cancer treatment as lower drug concentration can be used in a targeted mode. Additionally the method can be personalized as patient's own platelet can be used for deliver various drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Dox:

Doxorubicin hydrochloride

EAC:

Ehrlich ascites carcinoma

PPP:

Platelet poor plasma

PRP:

Platelet rich plasma

WP:

Washed platelet

References

  1. Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18:241–68.

    Article  PubMed  CAS  Google Scholar 

  2. Chonn A, Cullis PR. Recent advances in liposomal drug-delivery systems. Curr Opin Biotechnol. 1995;6:698–708.

    Article  PubMed  CAS  Google Scholar 

  3. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60.

    Article  PubMed  CAS  Google Scholar 

  4. Mufamadi MS, Pillay V, Choonara YE, Du Toit LC, Modi G, Naidoo D, et al. A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv. 2011;2011:939851.

    Article  PubMed  Google Scholar 

  5. Lian T, Ho RJ. Trends and developments in liposome drug delivery systems. J Pharm Sci. 2001;90:667–80.

    Article  PubMed  CAS  Google Scholar 

  6. Kozubek A, Gubernator J, Przeworska E, Stasiuk M. Liposomal drug delivery, a novel approach: plarosomes. Acta Biochim Pol. 2000;47:639–49.

    PubMed  CAS  Google Scholar 

  7. Sharma US, Sharma A. Liposomes in drug delivery: progress and limitations. Curr Opin Biotechnol. 1997;154:123–40.

    CAS  Google Scholar 

  8. Mezei M, Foldvari M, Gesztes A, Cardinal L, Behl M, Kowalczyk I. Topical liposomal local anesthetics: design, optimization and evaluation of formulations. Drug Dev Ind Pharm. 1993;19:2499–517.

    Article  Google Scholar 

  9. Nounou MM, El-Khordagui LK, Khalafallah NA, Khalil SA. In vitro release of hydrophilic and hydrophobic drugs from liposomal dispersions and gels. Acta Pharm. 2006;56:311–24.

    PubMed  CAS  Google Scholar 

  10. Mohanraj VJ, Chen Y. Nanoparticles—a review. Trop J Pharm Res. 2006;5:561–73.

    Google Scholar 

  11. Patra HK, Dasgupta AK, Sarkar S, Biswas I, Chattopadhyay A. Dual role of nanoparticles as drug carrier and drug. Cancer Nanotechnol. 2011;2:37–47.

    Article  CAS  Google Scholar 

  12. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.

    Article  PubMed  CAS  Google Scholar 

  13. Li YF, Chen C. Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small. 2011;7:2965–80.

    Article  PubMed  CAS  Google Scholar 

  14. Ahamed M, Alsalhi MS, Siddiqui MK. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411:1841–8.

    Article  PubMed  CAS  Google Scholar 

  15. Deb S, Chaterjee M, Bhattacharyay J, Lahiri P, Chaudhuri U, Pal Choudhuri S, et al. Role of purinergic receptors in platelet-nanoparticle interactions. Nanotoxicology. 2007;1:93–103.

    Article  CAS  Google Scholar 

  16. Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E. Platelets and wound healing. Front Biosci. 2008;13:3532–48.

    PubMed  Google Scholar 

  17. Hawiger J. Formation and regulation of platelet and fibrin hemostatic plug. Hum Pathol. 1987;18:111–22.

    Article  PubMed  CAS  Google Scholar 

  18. Mehta P. Potential role of platelets in the pathogenesis of tumor metastasis. Blood. 1984;63:55–63.

    PubMed  CAS  Google Scholar 

  19. Habermann BF. Targeting tumor cell-platelet interaction in breast cancer metastasis. Pathophysiol Haemost Thromb. 2003;33:56–8.

    Article  Google Scholar 

  20. Nieswandt B, Hafner M, Echtenacher B, Männel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 1999;59:1295–300.

    PubMed  CAS  Google Scholar 

  21. Deb S, Patra HK, Lahiri P, Dasgupta AK, Chakrabarti K, Chaudhuri U. Multistability in platelets and their response to gold nanoparticles. Nanomedicine. 2011;7:376–84.

    Article  PubMed  CAS  Google Scholar 

  22. Holmsen H, Day HJ, Stormorken H. The blood platelet release reaction. Scand J Haematol Suppl. 1969;8:3–26.

    PubMed  CAS  Google Scholar 

  23. Packham MA. Role of platelets in thrombosis and hemostasis. Can J Physiol Pharmacol. 1994;72:278–84.

    Article  PubMed  CAS  Google Scholar 

  24. Shattil SJ, Anaya-Galindo R, Bennett J, Colman RW, Cooper RA. Platelet hypersensitivity induced by cholesterol incorporation. J Clin Invest. 1975;55:636–43.

    Article  PubMed  CAS  Google Scholar 

  25. White JG. Why human platelets fail to kill bacteria. Platelets. 2006;17:191–200.

    Article  PubMed  CAS  Google Scholar 

  26. White JG. Platelets are covercytes, not phagocytes: uptake of bacteria involves channels of the open canalicular system. Platelets. 2005;16:121–31.

    Article  PubMed  CAS  Google Scholar 

  27. Bhattacharyya A, Choudhuri T, Pal S, Chattopadhyay S, Datta GK, Sa G, et al. Apoptogenic effects of black tea on ehrlich’s ascites carcinoma cell. Carcinogenesis. 2003;24:75–80.

    Article  PubMed  CAS  Google Scholar 

  28. Pal S, Choudhuri T, Chattopadhyay S, Bhattacharya A, Datta GK, Das T, et al. Mechanisms of curcumin-induced apoptosis of ehrlich’s ascites carcinoma cells. Biochem Biophys Res Commun. 2001;288:658–65.

    Article  PubMed  CAS  Google Scholar 

  29. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of dna damage in individual cells. Exp Cell Res. 1988;175:184–91.

    Article  PubMed  CAS  Google Scholar 

  30. Ardlie NG, Packham MA, Mustard JF. Adenosine diphosphate-induced platelet aggregation in suspensions of washed rabbit platelets. Br J Haematol. 1970;19:7–17.

    Article  PubMed  CAS  Google Scholar 

  31. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2:544–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

We thank ICMR, India (grant no. 45/06/2011/NAN-BMS) for supporting the research. We thank Dr. Suryyani Deb Dr. Hirak Kr Patra (Calcutta University) and Ms. Puja Biswas (DBT,IPLS) for their suggestions and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Kr. Dasgupta.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3440 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, S., Alam, M.A., Shaw, J. et al. Drug Delivery Using Platelet Cancer Cell Interaction. Pharm Res 30, 2785–2794 (2013). https://doi.org/10.1007/s11095-013-1097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1097-1

KEY WORDS

Navigation