Skip to main content

Advertisement

Log in

Increased Plasma Concentrations of Unbound SN-38, the Active Metabolite of Irinotecan, in Cancer Patients with Severe Renal Failure

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Delayed plasma concentration profiles of the active irinotecan metabolite SN-38 were observed in cancer patients with severe renal failure (SRF), even though SN-38 is eliminated mainly via the liver. Here, we examined the plasma concentrations of unbound SN-38 in such patients.

Methods

Plasma unbound concentrations were examined by ultrafiltration. Physiologically-based pharmacokinetic (PBPK) models of irinotecan and SN-38 were established to quantitatively assess the principal mechanism for delayed SN-38 elimination.

Results

The area under the plasma unbound concentration-time curve (AUCu) of SN-38 in SRF patients was 4.38-fold higher than that in normal kidney patients. The unbound fraction of SN-38 was also 2.6-fold higher in such patients, partly because SN-38 protein binding was displaced by the uremic toxin 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF). This result was supported by correlation of the unbound fraction of SN-38 with the plasma CMPF concentration, which negatively correlated with renal function. PBPK modeling indicated substantially reduced influx of SN-38 into hepatocytes and approximately one-third irinotecan dose for SRF patients to produce an unbound concentration profile of SN-38 similar to normal kidney patients.

Conclusion

The AUCu of SN-38 in SRF cancer patients is much greater than that of normal kidney patients primarily because of the reduced hepatic uptake of SN-38.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABCB1:

ATP-binding cassette, sub-family B, member 1

ABCC2:

ATP-binding cassette, sub-family C, member 2

ABCG2:

ATP-binding cassette, sub-family G, member 2

AUC:

Area under the plasma concentration-time curve

AUCu :

Area under the plasma unbound concentration-time curve

C1,CPT-11 :

Plasma concentration of irinotecan

C1,SN-38 :

Plasma concentration of SN-38

C2,CPT-11 :

Concentration of irinotecan in extracellular space

C2,SN-38 :

Concentration of SN-38 in extracellular space

C3,CPT-11 :

Concentration of irinotecan in hepatocyte

C3,SN-38 :

Concentration of SN-38 in hepatocyte

CES:

Carboxylesterase

CLR,CPT-11 :

Renal clearance of irinotecan

CLR,SN-38 :

Renal clearance of SN-38

CMPF:

3-Carboxy-4-methyl-5-propyl-2-furanpropionate

eGFR:

Estimated glomerular filtration rate

fp,CPT-11 :

Unbound fraction of irinotecan in plasma

fp,SN-38 :

Unbound fraction of SN-38 in plasma

ft,CPT-11 :

Unbound fraction of irinotecan in tissue

ft,SN-38 :

Unbound fraction of SN-38 in tissue

HA:

Hippuric acid

IS:

Indoxyl sulfate

OATPs:

Organic anion transporting polypeptides

PBPK:

Physiologically based pharmacokinetic

PSbile,CPT-11 :

Bile excretion clearance of irinotecan

PSbile,SN-38 :

Bile excretion clearance of SN-38

PSeff,CPT-11 :

Efflux clearance of irinotecan from hepatocyte

PSeff,SN-38 :

Efflux clearance of SN-38 from hepatocyte

PSinf,CPT-11 :

Influx clearance of irinotecan into hepatocyte

PSinf,SN-38 :

Influx clearance of SN-38 into hepatocyte

PSm,CES :

CES-mediated metabolic clearance of irinotecan

PSm,CYP3A :

CYP3A-mediated metabolic clearance of irinotecan

PSm,UGT :

UGT-mediated metabolic clearance of SN-38

PSmBlood,CES :

CES-mediated metabolism of irinotecan in blood

Qh :

Hepatatic blood flow rate

RB,CPT-11 :

Blood-to-plasma partition coefficient of irinotecan

RB,SN-38 :

Blood-to-plasma partition coefficient of SN-38

Rinf :

Infusion rate of irinotecan

SN-38:

7-ethyl-10-hydroxycamptothecin

UGT:

UDP-glucuronosyltransferase

V1,CPT-11,f :

Distribution volume of unbound irinotecan

V1,SN-38,f :

Distribution volume of unbound SN-38

V2 :

Volume of extracellular space in the liver

V3 :

Volume of the liver.

References

  1. Fujita K, Sugiura T, Okumura H, Umeda S, Nakamichi N, Watanabe Y, et al. Direct inhibition and down-regulation by uremic plasma components of hepatic uptake transporter for SN-38, an active metabolite of irinotecan, in humans. Pharm Res. 2014;31(1):204–15.

    Article  CAS  PubMed  Google Scholar 

  2. Chu XY, Kato Y, Sugiyama Y. Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Res. 1997;57(10):1934–8.

    CAS  PubMed  Google Scholar 

  3. Chu XY, Kato Y, Ueda K, Suzuki H, Niinuma K, Tyson CA, et al. Biliary excretion mechanism of CPT-11 and its metabolites in humans: involvement of primary active transporters. Cancer Res. 1998;58(22):5137–43.

    CAS  PubMed  Google Scholar 

  4. Nakatomi K, Yoshikawa M, Oka M, Ikegami Y, Hayasaka S, Sano K, et al. Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochem Biophys Res Commun. 2001;288(4):827–32.

    Article  CAS  PubMed  Google Scholar 

  5. Fujita K, Sunakawa Y, Miwa K, Akiyama Y, Sugiyama M, Kawara K, et al. Delayed elimination of SN-38 in cancer patients with severe renal failure. Drug Metab Dispos. 2011;39(2):161–4.

    Article  CAS  PubMed  Google Scholar 

  6. Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, et al. European Uremic Toxin Work G. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63(5):1934–43.

    Article  CAS  PubMed  Google Scholar 

  7. De Smet R, Dhondt A, Eloot S, Galli F, Waterloos MA, Vanholder R. Effect of the super-flux cellulose triacetate dialyser membrane on the removal of non-protein-bound and protein-bound uraemic solutes. Nephrol Dial Transplant. 2007;22(7):2006–12.

    Article  PubMed  Google Scholar 

  8. Niwa T. Removal of protein-bound uraemic toxins by haemodialysis. Blood Purification. 2013;35 Suppl 2:20–5.

    Article  CAS  PubMed  Google Scholar 

  9. Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res. 2001;7(8):2182–94.

    CAS  PubMed  Google Scholar 

  10. Combes O, Barre J, Duche JC, Vernillet L, Archimbaud Y, Marietta MP, et al. In vitro binding and partitioning of irinotecan (CPT-11) and its metabolite, SN-38, in human blood. Invest New Drugs. 2000;18(1):1–5.

  11. de Jong FA, Kitzen JJ, de Bruijn P, Verweij J, Loos WJ. Hepatic transport, metabolism and biliary excretion of irinotecan in a cancer patient with an external bile drain. Cancer Biol Ther. 2006;5(9):1105–10.

    Article  PubMed  Google Scholar 

  12. Slatter JG, Schaaf LJ, Sams JP, Feenstra KL, Johnson MG, Bombardt PA, et al. Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients. Drug Metab Dispos. 2000;28(4):423–33.

    CAS  PubMed  Google Scholar 

  13. Sparreboom A, de Jonge MJ, de Bruijn P, Brouwer E, Nooter K, Loos WJ, et al. Irinotecan (CPT-11) metabolism and disposition in cancer patients. Clin Cancer Res. 1998;4(11):2747–54.

    CAS  PubMed  Google Scholar 

  14. Guemei AA, Cottrell J, Band R, Hehman H, Prudhomme M, Pavlov MV, et al. Human plasma carboxylesterase and butyrylcholinesterase enzyme activity: correlations with SN-38 pharmacokinetics during a prolonged infusion of irinotecan. Cancer Chemother Pharmacol. 2001;47(4):283–90.

    Article  CAS  PubMed  Google Scholar 

  15. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  16. Nishi K, Kobayashi M, Nishii R, Shikano N, Takamura N, Kuga N, et al. Pharmacokinetic alteration of (99m)Tc-MAG3 using serum protein binding displacement method. Nucl Med Biol. 2013;40(3):366–70.

    Article  CAS  PubMed  Google Scholar 

  17. Takamura N, Haruta A, Kodama H, Tsuruoka M, Yamasaki K, Suenaga A, et al. Mode of interaction of loop diuretics with human serum albumin and characterization of binding site. Pharm Res. 1996;13(7):1015–9.

    Article  CAS  PubMed  Google Scholar 

  18. Sakai T, Takadate A, Otagiri M. Characterization of binding site of uremic toxins on human serum albumin. Biol Pharm Bull. 1995;18(12):1755–61.

    Article  CAS  PubMed  Google Scholar 

  19. Mathijssen RH, Verweij J, Loos WJ, de Bruijn P, Nooter K, Sparreboom A. Irinotecan pharmacokinetics-pharmacodynamics: the clinical relevance of prolonged exposure to SN-38. Br J Cancer. 2002;87(2):144–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.

    Article  CAS  PubMed  Google Scholar 

  21. Niemi M, Backman JT, Kajosaari LI, Leathart JB, Neuvonen M, Daly AK, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther. 2005;77(6):468–78.

    Article  CAS  PubMed  Google Scholar 

  22. Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi M. The effect of SLCO1B1 polymorphism on repaglinide pharmacokinetics persists over a wide dose range. Br J Clin Pharmacol. 2008;66(6):818–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Marbury TC, Ruckle JL, Hatorp V, Andersen MP, Nielsen KK, Huang WC, et al. Pharmacokinetics of repaglinide in subjects with renal impairment. Clin Pharmacol Ther. 2000;67(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao P, Vieira Mde L, Grillo JA, Song P, Wu TC, Zheng JH, et al. Evaluation of exposure change of nonrenally eliminated drugs in patients with chronic kidney disease using physiologically based pharmacokinetic modeling and simulation. J Clin Pharmacol. 2012;52(1 Suppl):91S–108S.

    Article  CAS  PubMed  Google Scholar 

  25. Plum A, Muller LK, Jansen JA. The effects of selected drugs on the in vitro protein binding of repaglinide in human plasma. Methods Find Exp Clin Pharmacol. 2000;22(3):139–43.

  26. Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, Li L, et al. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013;19(6):1458–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Meert N, Schepers E, De Smet R, Argiles A, Cohen G, Deppisch R, et al. Inconsistency of reported uremic toxin concentrations. Artif Organs. 2007;31(8):600–11.

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe H, Noguchi T, Miyamoto Y, Kadowaki D, Kotani S, Nakajima M, et al. Interaction between two sulfate-conjugated uremic toxins, p-cresyl sulfate and indoxyl sulfate, during binding with human serum albumin. Drug Metab Dispos: Biol Fate Chem. 2012;40(7):1423–8.

    Article  CAS  Google Scholar 

  29. Sakai T, Yamasaki K, Sako T, Kragh-Hansen U, Suenaga A, Otagiri M. Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin. Pharm Res. 2001;18(4):520–4.

    Article  CAS  PubMed  Google Scholar 

  30. Pavone B, Sirolli V, Giardinelli A, Bucci S, Forli F, Di Cesare M, et al. Plasma protein carbonylation in chronic uremia. J Nephrol. 2011;24(4):453–64.

    Article  CAS  PubMed  Google Scholar 

  31. Perna AF, Satta E, Acanfora F, Lombardi C, Ingrosso D, De Santo NG. Increased plasma protein homocysteinylation in hemodialysis patients. Kidney Int. 2006;69(5):869–76.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported in part by a Grant-in-Aid for Scientific Research (C) [23590198 to K.F.] from the Japan Society for the Promotion of Science (JSPS), in part by a Grant-in-Aid for Scientific Research (C) [26460205 to K.F.] and Grant-in-Aid for Young Scientists (B) [26860099 to Y.M.] from the same society, and in part by a Japanese Association of Dialysis Physicians Grant [JADP Grant 2014–1 to K.F.].

We have no conflict of interest to be disclosed.

Author contributions

Y.M., H.O., Y.W., H.S., Yu.S., K.S., K.K., Y.A., Ya.S., Ma. K., and Mu. K. performed the research. K.F., Y.M., H.O., and Y.A. analyzed the data. K.F., Y.M., and Y.K. wrote the manuscript. K.F. and Y.K. designed the research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ken-ichi Fujita or Yukio Kato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, Ki., Masuo, Y., Okumura, H. et al. Increased Plasma Concentrations of Unbound SN-38, the Active Metabolite of Irinotecan, in Cancer Patients with Severe Renal Failure. Pharm Res 33, 269–282 (2016). https://doi.org/10.1007/s11095-015-1785-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1785-0

KEY WORDS

Navigation