Skip to main content
Log in

Plant-derived bioactive compounds at sub-lethal concentrations: towards smart biocide-free antibiofilm strategies

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Biofilm resistance to biocides is becoming a global issue with an impact on many fields, including health care, agriculture, the environment, society and industry. Plants offer a virtually inexhaustible and sustainable resource of very interesting classes of biologically active, low-molecular-weight compounds (parvome). In the past, the plant parvomes were screened mainly for their lethal effects, disregarding concentrations and ecologically relevant functions of these molecules in the natural context. Testing sub-lethal concentrations of plant-derived compounds mimicking environmental levels may be critical to reveal mechanisms subtler than the killing activity, e.g. those influencing the multicellular behavior, offering an elegant way to develop novel biocide-free antibiofilm strategies. In a cross-disciplinary fashion, we illustrated recent successes of sub-lethal concentrations of plant-derived compounds, their ecological insight, pro et contra, future directions and impacts, envisioning implications for policy making and resource management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  PubMed  CAS  Google Scholar 

  • Akhbari A, Zinatizadeh AAL, Mohammadi P, Irandoust M, Mansouri Y (2011) Process modeling and analysis of biological nutrients removal in an integrated RBC-AS system using response surface methodology. Chem Eng J 168:269–279

    Article  CAS  Google Scholar 

  • Artini M, Papa R, Barbato G, Scoarughi GL, Cellini A, Morazzoni P, Bombardelli E, Selan L (2012) Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds. Bio org Med Chem 20:920–926

    Article  CAS  Google Scholar 

  • Bohlin L, Göransson U, Alsmark C, Wedén C, Backlund A (2010) Natural products in modern life science. Phytochem Rev 9:279–301

    Article  PubMed  CAS  Google Scholar 

  • Cappitelli F, Salvadori O, Albanese D, Villa F, Sorlini C (2012) Cyanobacteria cause black staining of the National Museum of the American Indian Building (Washington, DC, USA). Biofouling 28:257–266

    Article  PubMed  CAS  Google Scholar 

  • Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Schlenstedt G, Flockerzi V, Beck A (2010) Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1. FEBS Lett 584:2028–2032

    Article  PubMed  CAS  Google Scholar 

  • Chen KX, Li ZG (2009) Exploring the structural requirements for jasmonates and related compounds as novel plant growth regulators: a current computational perspective. Plant Signal Behav 4:1007–1009

    Article  PubMed  CAS  Google Scholar 

  • Cichocka D, Claxton J, Economidis I, Högel J, Venturi P, Aguilar A (2010) European Union research and innovation perspectives on biotechnology. J Biotechnol 156:382–391

    Article  PubMed  Google Scholar 

  • Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837

    Article  PubMed  CAS  Google Scholar 

  • Coenye T, Brackman G, Rigole P, De Witte E, Honraet K, Rossel B, Nelis HJ (2012) Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds. Phytomedicine 19:409–412

    Article  PubMed  CAS  Google Scholar 

  • Council Recommendation (2001) Prudent use of antimicrobial agents in human medicine (2002/77/EC). http://antibiotic.ecdc.europa.eu/PDFs/l_03420020205en00130016.pdf

  • Davies J (2011) How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 15:5–10

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Ryan KS (2012) Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol 7:252–259

    Article  PubMed  CAS  Google Scholar 

  • De Nys R, Steinberg PD (2002) Linking marine biology and biotechnology. Curr Opin Biotechnol 13:244–248

    Article  PubMed  Google Scholar 

  • De-Eknamkul W, Umehara K, Monthakantirat O, Toth R, Frecer V, Knapic L, Braiuca P, Noguchi H, Miertus S (2011) QSAR study of natural estrogen-like isoflavonoids and diphenolics from Thai medicinal plants. J Mol Graph Model 29:784–794

    Article  PubMed  CAS  Google Scholar 

  • Directive 98/8/EC of the European Parliament and of the Council of 16 February 1998 concerning the placing of biocidal products on the market. http://eur-lex.europa.eu/LexUriServ/site/en/consleg/1998/L/01998L0008-20070119-en.pdf

  • Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985

    Article  PubMed  CAS  Google Scholar 

  • Estrela AB, Heck MG, Abraham WR (2009) Novel approaches to control biofilm infections. Curr Med Chem 16:1512–1530

    Article  PubMed  CAS  Google Scholar 

  • European Food Safety Authority and European Centre for Disease Prevention and Control (2012) The European union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2010. EFSA J 10:2598 [233 pp]. www.efsa.europa.eu/efsajournal

  • Falcão MA, Fianco ALB, Lucas AM, Pereira MAA, Torres FC, Vargas RMF, Cassel E (2012) Determination of antibacterial activity of vacuum distillation fractions of lemongrass essential oil. Phytochem Rev. doi:10.1007/s11101-012-9255-3

    Google Scholar 

  • Flemming HC (2011) Microbial biofouling: unsolved problems, insufficient approaches, and possible solutions. In: Flemming HC et al (eds) Biofilm highlights, Springer series on biofilms 5. Springer, Berlin

    Chapter  Google Scholar 

  • Franceschini G, Macchietto S (2008) Model-based design of experiments for parameter precision: state of the art. Chem Eng Sci 63:4846–4872

    Article  CAS  Google Scholar 

  • Giacomucci L, Bertoncello R, Salvadori O, Martini I, Favaro M, Villa F, Sorlini C, Cappitelli F (2011) Microbial deterioration of artistic tiles from the facade of the Grande Albergo Ausonia & Hungaria (Venice, Italy). Microb Ecol 62:287–298

    Article  PubMed  Google Scholar 

  • Gibbons S (2005) Plants as a source of bacterial resistance modulators and anti-infective agents. Phytochem Rev 4:63–78

    Article  CAS  Google Scholar 

  • Gilliland SG, Gilchrist HG, Rockwell RF, Robertson GJ, Savard J-PL, Merkel F, Mosbech A, Lebreton J-D (2009) Evaluating the sustainability of harvest among northern common eiders Somateria mollissima borealis in Greenland and Canada. Wildlife Biol 15:24–36

    Article  Google Scholar 

  • Guedes AP, Franklin G, Fernandes-Ferreira M (2012) Hypericum sp.: essential oil composition and biological activities. Phytochem Rev 11:127–152

    Article  CAS  Google Scholar 

  • Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178–180

    Article  CAS  Google Scholar 

  • Harder T (2008) Marine epibiosis: concepts, ecological consequences and host defence. In Hans-Curt Flemming, P. Sriyutha Murthy, R. Venkatesan, Keith E. Cooksey (eds) Marine and industrial biofouling (Springer Series on Biofilms), edn. First, Springer, Berlin, pp 219–232

  • Heil M, Baldwin IT (2002) Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7:61–67

    Article  PubMed  CAS  Google Scholar 

  • Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  Google Scholar 

  • Howitz KT, Sinclair DA (2008) Xenohormesis: sensing the chemical cues of other species. Cell 133:387–391

    Article  PubMed  CAS  Google Scholar 

  • Hu SH, Kuo CH, Chang CM, Liu YC, Chiang WD, Shieh CJ (2012) Solvent selection and optimization of α-chymotrypsin-catalyzed synthesis of N-Ac-Phe-Tyr-NH2 using mixture design and response surface methodology. Biotechnol Prog 28(6):1443–1449

    Article  PubMed  CAS  Google Scholar 

  • Issac Abraham SV, Palani A, Ramaswamy BR, Shunmugiah KP, Arumugam VR (2011) Antiquorum sensing and antibiofilm potential of Capparis spinosa. Arch Med Res 42:658–668

    Article  PubMed  Google Scholar 

  • Issac Abraham SV, Palani A, Khadar Syed M, Shunmugiah KP, Arumugam VR (2012) Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res Int 45:85–92

    Article  Google Scholar 

  • Ivanisevic J, Thomas OP, Pedel L, Pénez N, Ereskovsky AV, Culioli G, Pérez T (2011) Biochemical trade-offs: evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi. PLoS ONE 6:e28059

    Article  PubMed  CAS  Google Scholar 

  • Jibrail K, Keat Teong L (2013) Process optimization and kinetic study for biodiesel production from non-edible sea mango (Cerbera odollam) oil using response surface methodology. Chem Eng J 214:157–164

    Article  Google Scholar 

  • Kar S, Roy K (2012) QSAR of phytochemicals for the design of better drugs. Expert Opin Drug Discov 7:877–902

    Article  PubMed  CAS  Google Scholar 

  • Kirakosyan A, Kaufman PB (2009) Recent advances in plant biotechnology, 1st edn. Springer, Berlin

    Book  Google Scholar 

  • Lam KS (2007) New aspects of natural products in drug discovery. Trends Microbiol 15:279–289

    Article  PubMed  CAS  Google Scholar 

  • Leardi R (2009) Experimental design in chemistry: a tutorial. Anal Chim Acta 652:161–172

    Article  PubMed  CAS  Google Scholar 

  • Lee EK, Jin YW, Park JH, Yoo YM, Hong SM, Amir R, Yan Z, Kwon E, Elfick A, Tomlinson S, Halbritter F, Waibel T, Yun BW, Loake GJ (2010) Cultured cambial meristematic cells as a source of plant natural products. Nat Biotechnol 28:1213–1217

    Article  PubMed  CAS  Google Scholar 

  • Li MH, Ung PM, Zajkowski J, Garneau-Tsodikova S, Sherman DH (2009) Automated genome mining for natural products. BMC Bioinformatics 10:185

    Article  PubMed  Google Scholar 

  • Lill MA (2007) Multi-dimensional QSAR in drug discovery. Drug Discov Today 12:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Mayavu P, Sugesh S, Ravindran VJ (2009) Antibacterial activity of seagrass species against biofilm forming bacteria. Res J Microbiol 4:314–319

    Article  Google Scholar 

  • Nargotra A, Sharma S, Koul JL, Sangwan PL, Khan IA, Kumar A, Taneja SC, Koul S (2009) Quantitative structure activity relationship (QSAR) of piperine analogs for bacterial NorA efflux pump inhibitors. Eur J Med Chem 44:4128–4135

    Article  PubMed  CAS  Google Scholar 

  • Papaneophytou CP, Kontopidis GA (2012) Optimization of TNF-α overexpression in Escherichia coli using response surface methodology: purification of the protein and oligomerization studies. Protein Expr Purif 86:35–44

    Article  PubMed  CAS  Google Scholar 

  • Phelan VV, Liu WT, Pogliano K, Dorrestein PC (2011) Microbial metabolic exchange–the chemotype-to-phenotype link. Nat Chem Biol 8:26–35

    Article  PubMed  Google Scholar 

  • Puglisi MP, Engel S, Jensen PR, Fenical W (2007) Antimicrobial activities of extracts from Indo-Pacific marine plants against marine pathogens and saprophytes. Mar Biol 150:531–540

    Article  Google Scholar 

  • Qian P-Y, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234

    Article  PubMed  CAS  Google Scholar 

  • Quave CL, Plano LWR, Pantuso T, Bennett BC (2008) Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 118:418–428

    Article  PubMed  CAS  Google Scholar 

  • Quave CL, Estévez-Carmona M, Compadre CM, Hobby G, Hendrickson H, Beenken KE, Smeltzer MS (2012) Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS ONE 7:e28737

    Article  PubMed  CAS  Google Scholar 

  • Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9:117–128

    Article  PubMed  CAS  Google Scholar 

  • Ren D, Zuo R, González Barrios AF, Bedzyk LA, Eldridge GR, Pasmore ME, Wood TK (2005) Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl Environ Microbiol 71:4022–4034

    Article  PubMed  CAS  Google Scholar 

  • Renier S, Hébraud M, Desvaux M (2011) Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. Environ Microbiol 13:835–850

    Article  PubMed  CAS  Google Scholar 

  • Rickard AH, Palmer RJ Jr, Blehert DS, Campagna SR, Semmelhack MF, Egland PG, Bassler BL, Kolenbrander PE (2006) Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 60:1446–1456

    Article  PubMed  CAS  Google Scholar 

  • SCENIHR (2009) The scientific committee on emerging and newly identified health risks report. http://ec.europa.eu/health/opinions/en/biocides-antibiotic-resistance/l-3/8-risk-assessment.htm

  • Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27:141–150

    Article  PubMed  CAS  Google Scholar 

  • Tajkarimi MM, Ibrahim SA, Cliver DO (2010) Antimicrobial herb and spice compounds in food. Food Control 21:1199–1218

    Article  CAS  Google Scholar 

  • Trentin DS, Giordani RB, Zimmer KR, da Silva AG, da Silva MV, Correia MT, Baumvol IJ, Macedo AJ (2011) Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J Ethnopharmacol 137:327–335

    Article  Google Scholar 

  • Vattem DA et al (2007) Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 78:302–310

    Article  PubMed  CAS  Google Scholar 

  • Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design—a review. Curr Top Med Chem 10:95–115

    Article  PubMed  CAS  Google Scholar 

  • Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS (2010) Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 109:515–527

    PubMed  CAS  Google Scholar 

  • Villa F, Pitts B, Stewart PS, Giussani B, Roncoroni S, Albanese D, Giordano C, Tunesi M, Cappitelli F (2011) Efficacy of zosteric acid sodium salt on the yeast biofilm model Candida albicans. Microb Ecol 62:584–598

    Article  PubMed  CAS  Google Scholar 

  • Villa F, Borgonovo G, Cappitelli F, Giussani B, Bassoli A (2012a) Sub-lethal concentrations of Muscari comosum bulb extract suppress adhesion and induce detachment of sessile yeast cells. Biofouling 28:1107–1117

    Article  PubMed  Google Scholar 

  • Villa F, Remelli W, Forlani F, Vitali A, Cappitelli F (2012b) Altered expression level of Escherichia coli proteins in response to treatment with the antifouling agent zosteric acid sodium salt. Environ Microbiol 14:1753–1761

    Article  PubMed  CAS  Google Scholar 

  • Vriens J, Nilius B, Vennekens R (2008) Herbal compounds and toxins modulating TRP channels. Curr Neuropharmacol 6:79–96

    Article  PubMed  CAS  Google Scholar 

  • Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F (2012) The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol 3:292

    Article  PubMed  Google Scholar 

  • Wright AD, de Nys R, Angerhofer CK, Pezzuto JM, Gurrath M (2006) Biological activities and 3D QSAR studies of a series of Delisea pulchra (cf. fimbriata) derived natural products. J Nat Prod 69:1180–1187

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Høiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53:1054–1061

    Article  PubMed  CAS  Google Scholar 

  • Yao L (2012) In silico search for drug targets of natural compounds. Curr Pharm Biotechnol 13:1632–1639

    Article  PubMed  CAS  Google Scholar 

  • Yao C, Jiang B, Li T, Qin B, Feng X, Zhang H, Wang C, Tu S (2011) Design and an efficient synthesis of natural product-based cyclopenta[b]pyran derivatives with potential bioactivity. Bio org Med Chem Lett 21:599–601

    Article  CAS  Google Scholar 

  • Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci 362:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Loong WLC, Chou S, Tang C, Wang R, Fane AG (2012) Membrane biofouling and scaling in forward osmosis membrane bioreactor. J Memb Sci 403–404:8–14

    Article  Google Scholar 

  • Zhou W, Dai Z, Chen Y, Wang H, Yuan Z (2012) High-dimensional descriptor selection and computational QSAR modeling for antitumor activity of ARC-111 analogues based on support vector regression (SVR). Int J Mol Sci 13:1161–1172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German DAAD and the Italian CRUI in the framework of the Vigoni project 2012 “Seagrass compounds inhibit biofilm formation—from the identification to the application”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Cappitelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villa, F., Cappitelli, F. Plant-derived bioactive compounds at sub-lethal concentrations: towards smart biocide-free antibiofilm strategies. Phytochem Rev 12, 245–254 (2013). https://doi.org/10.1007/s11101-013-9286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-013-9286-4

Keywords

Navigation