Skip to main content
Log in

Functional Food Quality of Curcuma caesia, Curcuma zedoaria and Curcuma aeruginosa Endemic to Northeastern India

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Curcuma spp. (Zingiberaceae) is one of the significant ingredients in food and traditional medicines. The current study was to investigate health-benefits of the rhizomes of endemic Curcuma caesia, Curcuma zedoaria and Curcuma aeruginosa using in vitro antioxidant, antiinflammatory and human tumor cell proliferation inhibitory activities. Among these, C. caesia (black turmeric) showed the best overall biological activities based on [3-(4, 5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and lipid peroxidation (LPO), cyclooxygenase (COX-1 and -2) enzymes, and tumor cell growth inhibitory assays. The hexane and methanolic extracts of C. caesia (CCH and CCM) showed LPO inhibition by 31 and 43 %, and COX-2 enzyme by 29 and 38 %, respectively, at 100 μg/ml. Eleven terpenoids were isolated and identified. The MTT antioxidant assay revealed that the extracts of three Curcuma spp. at 250 μg/ml and isolates at 5 μg/ml demonstrated activity comparable to positive controls vitamin C and t-butyl hydroquinone (TBHQ) at 25 μg/ml. The extracts inhibited LPO by 40 % at 250 μg/ml whereas pure isolates 1–11 by about 20 %. The extracts and isolates inhibited COX-1 and -2 enzymes between the ranges of 3–56 and 5–30 %, respectively. The in vitro biological activity exhibited by the extracts and isolates of C. caesia rhizome further supported its use in traditional medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen IN, Chang CC, Ng CC, Wang CY, Shyu YT, Chang TL (2008) Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods Hum Nutr 63:15–20

    Google Scholar 

  2. Pari L, Murugan P (2007) Changes in glycoprotein components in streptozotocin-nicotinamide induced type 2 diabetes: Influence of tetrahydrocurcumin from Curcuma longa. Plant Foods Hum Nutr 62:25–29

    Google Scholar 

  3. Banerjee A, Nigam SS (1976) Antifungal activity of the essential oil of Curcuma caesia Roxb. Indian J Med Res 64:1318–1321

    CAS  Google Scholar 

  4. Wilson B, Abraham G, Manju VS, Mathew M, Vimala B, Sundaresan S et al (2005) Antimicrobial activity of Curcuma zedoaria and Curcuma malabarica tubers. J Ethnopharmacol 99:147–151

  5. Ruslay S, Abas F, Shaari K, Zainal Z, Maulidiani, Sirat H, Israf DA et al (2007) Characterization of the components present in the active fractions of health gingers (Curcuma xanthorrhiza and Zingiber zerumbet) by HPLC–DAD–ESIMS. Food Chem 104:1183–1191

  6. Syu WJ, Shen CC, Don MJ, Ou JC, Lee GH, Sun CM (1998) Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria. J Nat Prod 61:1531–1534

    Article  CAS  Google Scholar 

  7. Tushar S, Basak S, Sarma GC, Rangan L (2010) Ethnomedical uses of Zingiberaceous plants of Northeast India. J Ethnopharmacol 132:286–296

    Google Scholar 

  8. Liu Y, Nair MG (2010) An efficient and economical MTT assay for determining the antioxidant activity of compounds and extracts. J Nat Prod 77:1193–1195

    Article  Google Scholar 

  9. Arora A, Nair MG, Strasburg GM (1998) Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med 24:1355–1363

    Google Scholar 

  10. Wang H, Nair MG, Strasburg GM, Chang Y, Booren AM, Gray JI et al (1999) Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J Nat Prod 62:294–296

    Article  CAS  Google Scholar 

  11. Seeram NP, Cichewicz RH, Chandra A, Nair MG (2003) Cyclooxygenase inhibitory and antioxidant compounds from crabapple fruits. J Agric Food Res 51:1948–1951

    Google Scholar 

  12. Jayaprakasam B, Zhang Y, Nair MG (2004) Tumor cell proliferation and cyclooxygenase enzyme inhibitory compounds in Amaranthus tricolor. J Agric Food Chem 52:6939–6943

    Google Scholar 

  13. Sakui N, Kuroyanagi M, Ishitobi Y, Sato M, Ueno A (1992) Biotransformation of sesquiterpenes by cultured cells of Curcuma zedoaria. Phytochemistry 31:143–147

    Article  CAS  Google Scholar 

  14. Baldovini N, Tomi F, Casanova J (2001) Enantiomeric differentiation of terpenic olefins by carbon-13 NMR using chiral binuclear shift reagents. Magn Reson Chem 39:621–624

    Google Scholar 

  15. Dekebo A, Dagne E, Hansen LK, Gautunb OR, Aasen AJ (2000) Crystal structures of two furanosesquiterpenes from Commiphora sphaerocarpa. Tetrahedron Lett 41:9875–9878

    Article  CAS  Google Scholar 

  16. Shiobara Y, Asakawa Y, Kodama M, Takemoto T (1986) Zedoaral 13-hydroxygermacrone and curzeone, three sesquiterpenoids from Curcuma zedoaria. Phytochemistry 25:1351–1353

    Google Scholar 

  17. Lou Y, Zhao F, Wu Z, Peng KF, Wei XC, Chen LX et al (2009) Germacrane-type sesquiterpenes from Curcuma wenyujin. Helv Chim Acta 92:1665–1672

    Article  CAS  Google Scholar 

  18. Firman K, Kinoshita T, Itait A, Sankawa U (1998) Terpenoids from Curcuma heyneana. Phytochemistry 27:3887–3891

    Article  Google Scholar 

  19. Piet DP, Schrijvers R, Franssen MCR, Groot AD (1995) Biotransformation of germacrane epoxides by Cichorium intybus. Tetrahedron 51:6303–6314

    Article  CAS  Google Scholar 

  20. Takano I, Yasuda I, Takeya K, Itokawa H (1995) Guaiane sesquiterpene lactones from Curcuma aeruginosa. Phytochemistry 40:1197–1200

    Article  CAS  Google Scholar 

  21. Fujiwara M, Yagi N, Miyazawa M (2010) Acetylcholinesterase inhibitory activity of volatile oil from Peltophorum dasyrachis Kurz ex Bakar (Yellow Batai) and bisabolane-type sesquiterpenoids. J Agric Food Chem 58:2824–2829

    Google Scholar 

  22. Blay G, Cardona L, Garcia B, Garcia GL, Pedro JR (1996) Ring-opening aminolysis of sesquiterpene lactones: An easy entry to bioactive sesquiterpene derivatives. Synthesis of (+)-13-cyperone and (−)-eudesma-3,5-diene from santonin. Tetrahedron 52:10507–10518

    Google Scholar 

  23. García Martínez A, Barcina JO, Rodríguez Herrero ME, Iglesias de Dios M, Vilar ET, Subramanian LR (1994) σ-Assistance of the C4–C7 bond in the solvolysis of 1-norbornyl triflates. Tetrahedron Lett 35:1793–1796

Download references

Acknowledgement

This work was supported by Michigan State University AgBioResearch, East Lansing, Michigan, USA and National Agricultural Innovation Project (NAIP), Indian Council of Agricultural Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muraleedharan G. Nair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Roy, S.S., Nebie, R.H.C. et al. Functional Food Quality of Curcuma caesia, Curcuma zedoaria and Curcuma aeruginosa Endemic to Northeastern India. Plant Foods Hum Nutr 68, 72–77 (2013). https://doi.org/10.1007/s11130-013-0333-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-013-0333-5

Keywords

Navigation