Skip to main content
Log in

Genome Prediction of Putative Genome-Linked Viral Protein (VPg) of Astroviruses

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Positive-sense single-stranded RNA (+ssRNA) viruses replicate by uncoating the RNA genome for translation to provide viral proteins essential for genome replication and the production of new viral particles. The viral proteins are synthesized from a polyprotein precursor, which is cleaved nascently. The synthesized proteins include viral RNA-dependent RNA polymerase (RdRP), viral genome-linked protein (VPg), and a helicase. VPg is covalently attached to the genomic form of +ssRNA viruses. Helicases and NTPase unwind the RNA before replication. VPg and helicases have been identified in +ssRNA families, however, the presence of VPg and helicase in the Astroviridae, another +ssRNA family, has not been fully elucidated. Computational tools were utilized to provide sequence analysis evidence for the presence and genomic location of astrovirus VPg and helicase. HMMER program v2.1.1 was used to build Hidden Markov Model (HMM) profile for calicivirus VPg to search for conserved motifs in the astrovirus genome. We performed phylogenetic analysis of two genomic regions of astroviruses and caliciviruses (encoding the RdRP and VPg). We identified a putative VPg coding region in astrovirus. This region was located in open reading frame 1a (ORF1 a) and included sites with high sequence similarity to the VPg coding regions of Caliciviridae, Piconaviridae, and Potyviridae. A region encoding a putative astrovirus helicase identified conserved motifs only with pestivirus helicase sequences. Sequence analysis and comparison to other +ssRNA viruses supports the presence of VPg in the Astroviridae. Further laboratory analysis will be necessary to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Wimmer (1982) Cell 28 199–201 Occurrence Handle10.1016/0092-8674(82)90335-X Occurrence Handle1:CAS:528:DyaL38Xhtlyis7Y%3D Occurrence Handle7060125

    Article  CAS  PubMed  Google Scholar 

  2. A.V. Paul J.H. Van Boom D. Filippov E. Wimmer (1998) Nature 393 280–284 Occurrence Handle10.1038/30529 Occurrence Handle1:CAS:528:DyaK1cXjtlyksrY%3D Occurrence Handle9607767

    Article  CAS  PubMed  Google Scholar 

  3. A.V. Paul E. Rieder D.W. Kim J.H. Van Boom E. Wimmer (2000) J Virol 74 10359–10370 Occurrence Handle10.1128/JVI.74.22.10359-10370.2000 Occurrence Handle1:CAS:528:DC%2BD3cXnvF2rsLs%3D Occurrence Handle11044080

    Article  CAS  PubMed  Google Scholar 

  4. N. Kitamura C.J. Adler P.G. Rothberg J. Martinko S.G. Nathenson E. Wimmer (1980) Cell 21 295–302 Occurrence Handle10.1016/0092-8674(80)90137-3 Occurrence Handle1:CAS:528:DyaL3cXlsVGisLk%3D Occurrence Handle6250717

    Article  CAS  PubMed  Google Scholar 

  5. D.M. Dunham X. Jiang T. Berke A.W. Smith D.O. Matson (1998) Arch Virol 143 2421–2430 Occurrence Handle10.1007/s007050050471 Occurrence Handle1:CAS:528:DyaK1MXhslaiu78%3D Occurrence Handle9930197

    Article  CAS  PubMed  Google Scholar 

  6. Eddy S., Washington University http://hmmer.wustl.edu/, St. Louis, MO, 2001.

  7. F.L. Schaffer D.W. Ehresmann M.K. Fretz M.I. Soergel (1980) J Gen Virol 47 215–220 Occurrence Handle1:CAS:528:DyaL3cXhvFejs7Y%3D Occurrence Handle7365464

    CAS  PubMed  Google Scholar 

  8. T.P. Herbert I. Brierley T.D. Brown (1997) J Gen Virol 78 IssueIDPt 5 1033–1040 Occurrence Handle1:CAS:528:DyaK2sXivVKjurk%3D Occurrence Handle9152420

    CAS  PubMed  Google Scholar 

  9. B. Jiang S.S. Monroe E.V. Koonin S.E. Stine R.I. Glass (1993) Proc Natl Acad Sci USA 90 10539–10543 Occurrence Handle1:CAS:528:DyaK2cXis1amsr8%3D Occurrence Handle8248142

    CAS  PubMed  Google Scholar 

  10. C.M. Jonassen T.T. Jonassen T.M. Sveen B. Grinde (2003) Virus Res 91 195–201 Occurrence Handle10.1016/S0168-1702(02)00269-1 Occurrence Handle1:CAS:528:DC%2BD3sXovFGlug%3D%3D Occurrence Handle12573498

    Article  CAS  PubMed  Google Scholar 

  11. S.S. Velankar P. Soultanas M.S. Dillingham H.S. Subramanya D.B. Wigley (1999) Cell 97 75–84 Occurrence Handle10.1016/S0092-8674(00)80716-3 Occurrence Handle1:CAS:528:DyaK1MXitlGmtLw%3D Occurrence Handle10199404

    Article  CAS  PubMed  Google Scholar 

  12. A.E. Gorbalenya E.V. Koonin (1993) Curr Opin Struct Biol 3 419–429 Occurrence Handle10.1016/S0959-440X(05)80116-2 Occurrence Handle1:CAS:528:DyaK3sXltFWku78%3D

    Article  CAS  Google Scholar 

  13. P. Linder P.F. Lasko M. Ashburner P. Leroy P.J. Nielsen K. Nishi J. Schnier P.P. Slonimski (1989) Nature 337 121–122 Occurrence Handle10.1038/337121a0 Occurrence Handle1:CAS:528:DyaL1MXhtFSgtLs%3D Occurrence Handle2563148

    Article  CAS  PubMed  Google Scholar 

  14. J.E. Walker M. Saraste M.J. Runswick N.J. Gay (1982) Embo J 1 945–951 Occurrence Handle1:CAS:528:DyaL3sXhtVensbY%3D Occurrence Handle6329717

    CAS  PubMed  Google Scholar 

  15. M.J. Carter (1994) Arch Virol 9 IssueIDSuppl 429–439 Occurrence Handle1:STN:280:ByuA3crkt1Y%3D

    CAS  Google Scholar 

  16. E.V. Koonin (1991) J Gen Virol 72 IssueIDPt 9 2197–2206 Occurrence Handle1895057

    PubMed  Google Scholar 

  17. B.L. Liu G.J. Viljoen I.N. Clarke P.R. Lambden (1999) J Gen Virol 80 291–296 Occurrence Handle1:CAS:528:DyaK1MXhsFCht7s%3D Occurrence Handle10073687

    CAS  PubMed  Google Scholar 

  18. D.A. Benson I. Karsch-Mizrachi D.J. Lipman J. Ostell B.A. Rapp D.L. Wheeler (2002) Nucleic Acids Res 30 17–20 Occurrence Handle10.1093/nar/30.1.17 Occurrence Handle1:CAS:528:DC%2BD38Xht12ksb0%3D Occurrence Handle11752243

    Article  CAS  PubMed  Google Scholar 

  19. J.F. Murphy P.G. Klein A.G. Hunt J.G. Shaw (1996) Virology 220 535–538 Occurrence Handle10.1006/viro.1996.0344 Occurrence Handle1:CAS:528:DyaK28Xjs1ymur4%3D Occurrence Handle8661407

    Article  CAS  PubMed  Google Scholar 

  20. P.A. Revill A.D. Davidson P.J. Wright (1998) Virology 249 231–237 Occurrence Handle10.1006/viro.1998.9345 Occurrence Handle1:CAS:528:DyaK1cXmsVyms7Y%3D Occurrence Handle9791015

    Article  CAS  PubMed  Google Scholar 

  21. I. Oruetxebarria D. Guo A. Merits K. Makinen M. Saarma J.P. Valkonen (2001) Virus Res 73 103–112 Occurrence Handle10.1016/S0168-1702(00)00216-1 Occurrence Handle1:CAS:528:DC%2BD3MXhtFSksLc%3D Occurrence Handle11172914

    Article  CAS  PubMed  Google Scholar 

  22. J.D. Thompson T.J. Gibson F. Plewniak F. Jeanmougin D.G. Higgins (1997) Nucleic Acids Res 25 4876–4882 Occurrence Handle10.1093/nar/25.24.4876 Occurrence Handle1:CAS:528:DyaK1cXntFyntQ%3D%3D Occurrence Handle9396791

    Article  CAS  PubMed  Google Scholar 

  23. Nicholas K.B., Nicholas H.B.J., Deerfield D.W., http://www.hgmp.mrc.ac.uk/embnet.news/vol4_2/,genedoc.html, 1997.

  24. Felsenstein J., Department of Genetics, University of Washington, Seattle, 1993.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas K. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Mutairy, B., Walter, J.E., Pothen, A. et al. Genome Prediction of Putative Genome-Linked Viral Protein (VPg) of Astroviruses. Virus Genes 31, 21–30 (2005). https://doi.org/10.1007/s11262-004-2196-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-004-2196-1

Keywords

Navigation