Skip to main content
Log in

Vegetative propagation and its possible role as a genetic bottleneck in the shaping of the apple fruit crinkle viroid populations in apple and hop plants

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Apple fruit crinkle viroid (AFCVd) infects apples and hops. To analyze the genetic diversity of AFCVd, nine apple and six hop isolates were collected from several locations in Japan. In total, 76 independent cDNA clones were used for sequencing and phylogenetic analyses. Two major population clusters were identified. The first consisted of all four hop isolates from Akita and some from Yamagata. The second cluster consisted of some Yamagata hop and all apple isolates. On the basis of the polymorphism found in the nucleotide insertion between positions 142/143 of the AFCVd genome and the history of hop cultivation in the region, it appears likely that one of the AFCVd populations that pre-existed in the Yamagata hops served as a “founder” for the Akita hop cluster. In this scenario, a genetic bottleneck caused by vegetative propagation played an important role in the shaping of viroid populations in a cultivated crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T. Ito, T. Sano, K. Yoshida, Ann. Phytopathol. Soc. Jpn. 64, 424–425 (1998)

    Google Scholar 

  2. T. Sano, H. Yoshida, M. Goshono, T. Monma, H. Kawasaki, K. Ishizaki, J. Gen. Plant. Pathol. 70, 181–187 (2004). doi:10.1007/s10327-004-0105-z

    Article  CAS  Google Scholar 

  3. C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball (eds.), in Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses (Elsevier, 2005), 1259 pp

  4. H. Koganezawa, Y. Ohnuma, T. Sakuma, H. Yanase, Bull Fruit Tree Res Stn. Ser. C 16, 57–62 (1989)

    Google Scholar 

  5. T. Ito, S. Kanematsu, H. Koganezawa, T. Tsuchizaki, K. Yoshida, Ann. Phytopathol. Soc. Jpn. 59, 520–527 (1993)

    Article  CAS  Google Scholar 

  6. A. Iijima, Shokubutsu Boeki. 44, 130–132 (1990)

    Google Scholar 

  7. E. Sato, Shudai Chiri 48, 27–32 (2001) (ISSN:02865785)

    Google Scholar 

  8. M.A. Rezaian, Nucleic Acids Res. 18, 1813–1818 (1990). doi:10.1093/nar/18.7.1813

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. S. Kofalvi, J.F. Marcos, M.C. Canizares, V. Pallas, T. Candresse, J. Gen. Virol. 78, 3177–3186 (1997)

    Article  PubMed  CAS  Google Scholar 

  10. M. Roossinck, W.L. Schneider, Quasispecies: concept and implications for virology, in Current Topics in Microbiology and Immunology, vol. 299, ed. by E. Domingo, (Springer, Berlin, 2006), pp. 337–348. ISSN 0070-217X

  11. J. Matousek, L. Orctová, J. Ptáek, J. Patzak, P. Ddi, G. Steger et al., J. Virol. 81, 11891–11899 (2007). doi:10.1128/JVI.01165-07

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Y. Tomitaka, T. Yamashita, K. Ohshima, J. Gen. Plant Pathol. 73, 197–208 (2007). doi:10.1007/s10327-007-0003-2

    Article  CAS  Google Scholar 

  13. A. Ali, H. Li, W.L. Schneider, D.J. Sherman, S. Gray, D. Smith et al., J. Virol. 80, 8345–8350 (2006). doi:10.1128/JVI.00568-06

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. B. Moury, F. Fabre, R. Senoussi, Proc. Natl. Acad. Sci. USA 104, 17891–17896 (2007). doi:10.1073/pnas.0702739104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. M. Matsumoto, H. Yamamoto, S. Fuji, M. Inoue, J. Gen. Plant Pathol. 74, 76–80 (2008). doi:10.1007/s10327-007-0057-1

    Article  CAS  Google Scholar 

  16. C. Jridi, J.-F. Martin, V. Marie-Jeanne, G. Labonne, S. Blanc, J. Virol. 80, 2349–2357 (2006). doi:10.1128/JVI.80.5.2349-2357.2006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. M. Bar-Joseph, in Viroids, ed. by A. Hadidi, R. Flores, J.W. Randles, J.S. Semancik (CSIRO Publishing, Collingwood, Australia, 2003), pp. 246–251

    Google Scholar 

  18. J.A. Szychowski, J.P. Doazan, P. Leclair, M. Garnier, R. Credi, A. Minafra et al., Vitis 30, 25–36 (1991)

    Google Scholar 

  19. A. Elleuch, H. Fakhfakh, M. Pelchat, P. Landry, M. Marrakchi, J.-P. Perreault, Eur. J. Plant Pathol. 108, 815–820 (2002). doi:10.1023/A:1020855405948

    Article  CAS  Google Scholar 

  20. R. Guo, T. Sano, Z. Cheng, S. Li, Plant Pathol. 56, 339 (2007). doi:10.1111/j.1365-3059.2007.01532.x

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant-in Aid for Scientific Research B18380028 and 18658016 from Japan Society for the Promotion of Science, and Grant-in Aid-for Scientific Research of Priority Area, Hirosaki University 2004–2006. This work was also supported in part by a grant from the Brewers Association of Japan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Sano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sano, T., Isono, S., Matsuki, K. et al. Vegetative propagation and its possible role as a genetic bottleneck in the shaping of the apple fruit crinkle viroid populations in apple and hop plants. Virus Genes 37, 298–303 (2008). https://doi.org/10.1007/s11262-008-0270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-008-0270-9

Keywords

Navigation