Skip to main content

Advertisement

Log in

Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The analysis on codon usage bias of UL24 gene of duck enteritis virus (DEV) may improve our understanding of the evolution and pathogenesis of DEV and provide a basis for understanding the relevant mechanism for biased usage of synonymous codons and for selecting appropriate expression systems to improve the expression of target genes. The codon usage bias of UL24 genes of DEV and 27 reference herpesviruses were analyzed. The results showed that codon of UL24 gene of DEV was strong bias toward the synonymous codons with A and T at the third codon position. A high level of diversity in codon usage bias existed, and the effective number of codons used in a gene plot revealed that the genetic heterogeneity in UL24 gene of herpesviruses was constrained by the G + C content. The phylogentic analysis suggested that DEV was evolutionarily closer to Alphaherpesvirinae and that there was no significant deviation in codon usage in different virus strains. There were 20 codons showing distinct usage differences between DEV and Escherichia coli, 23 between DEV and Homo sapiens, but only 16 codons between DEV and yeast. Therefore the yeast expression system may be more suitable for the expression of DEV genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. R. Grantham, C. Gautier, M. Gouy, R. Mercier, A. Pave, Nucleic Acids Res. 8, 197 (1980). doi:https://doi.org/10.1093/nar/8.1.197-c

    Article  Google Scholar 

  2. A. Marin, J. Bertranpetit, J.L. Oliver, J.R. Medina, Nucleic Acids Res. 17, 6181–6189 (1989). doi:https://doi.org/10.1093/nar/17.15.6181

    Article  CAS  PubMed Central  Google Scholar 

  3. A.T. Lloyd, P.M. Sharp, Nucleic Acids Res. 20, 5289–5295 (1992). doi:https://doi.org/10.1093/nar/20.20.5289

    Article  CAS  PubMed Central  Google Scholar 

  4. D.B. Levin, B. Whittome, J. Gen. Virol. 81, 2313–2325 (2000)

    Article  CAS  Google Scholar 

  5. G.M. Jenkins, M. Pagel, E.A. Gould, P.M.A. Zanotto, E.C. Holmes, J. Mol. Evol. 52, 383–390 (2001). doi:https://doi.org/10.1007/s002390010168

    Article  CAS  Google Scholar 

  6. G.M. Jenkins, E.C. Holmes, Virus Res. 92, 1–7 (2003). doi:https://doi.org/10.1016/S0168-1702(02)00309-X

    Article  CAS  Google Scholar 

  7. R. Grantham, C. Gautier, M. Gouy, M. Jacobzone, R. Mercier, Nucleic Acids Res. 9, r43–r74 (1981). doi:https://doi.org/10.1093/nar/9.1.213-b

    Article  CAS  PubMed Central  Google Scholar 

  8. T. Ikemura, Mol. Biol. Evol. 2, 13–34 (1985)

    CAS  PubMed  Google Scholar 

  9. S.K. Gupta, T.C. Ghosh, Gene 273, 63–70 (2001). doi:https://doi.org/10.1016/S0378-1119(01)00576-5

    Article  CAS  Google Scholar 

  10. T. Lesnik, J. Solomovici, A. Deana, R. Ehrlich, C. Reiss, J. Theor. Biol. 202, 175–185 (2000). doi:https://doi.org/10.1006/jtbi.1999.1047

    Article  CAS  Google Scholar 

  11. W. Gu, T. Zhou, J. Ma, X. Sun, Z. Lu, Virus Res. 101, 155–161 (2004). doi:https://doi.org/10.1016/j.virusres.2004.01.006

    Article  CAS  Google Scholar 

  12. G. D’Onofrio, T.C. Ghosh, G. Bernardi, Gene 300, 179–187 (2002). doi:https://doi.org/10.1016/S0378-1119(02)01045-4

    Article  Google Scholar 

  13. S.K. Gupta, S. Majumdar, T.K. Bhattacharya, T.C. Ghos, Biochem. Biophys. Res. Commun. 269, 692–696 (2000). doi:https://doi.org/10.1006/bbrc.2000.2351

    Article  CAS  Google Scholar 

  14. H. Romero, A. Zavala, H. Musto, Gene 242, 307–311 (2000). doi:https://doi.org/10.1016/S0378-1119(99)00491-6

    Article  CAS  Google Scholar 

  15. J.O. McInerney, Proc. Natl. Acad. Sci. USA 95, 10698–10703 (1998). doi:https://doi.org/10.1073/pnas.95.18.10698

    Article  CAS  Google Scholar 

  16. S. Basak, T. Banerjee, S.K. Gupta, T.C. Ghosh, J. Biomol. Struct. Dyn. 22, 205–214 (2004)

    Article  CAS  Google Scholar 

  17. D.J. Lynn, G.A.C. Singer, D.A. Hickey, Nucleic Acids Res. 30, 4272–4277 (2002). doi:https://doi.org/10.1093/nar/gkf546

    Article  CAS  PubMed Central  Google Scholar 

  18. H. Naya, A. Zavala, H. Romero, H. Rodríguez-Maseda, H. Musto, Biochem. Biophys. Res. Commun. 325, 1252–1257 (2004). doi:https://doi.org/10.1016/j.bbrc.2004.10.170

    Article  CAS  Google Scholar 

  19. J.R. Lobry, C. Gautier, Nucleic Acids Res. 22, 3174–3180 (1994). doi:https://doi.org/10.1093/nar/22.15.3174

    Article  CAS  PubMed Central  Google Scholar 

  20. B. Garat, H. Musto, Biochem. Biophys. Res. Commun. 279, 996–1000 (2000). doi:https://doi.org/10.1006/bbrc.2000.4051

    Article  CAS  Google Scholar 

  21. A. Zavala, H. Naya, H. Romero, H. Musto, J. Mol. Evol. 54, 563–568 (2002). doi:https://doi.org/10.1007/s00239-001-0040-y

    Article  CAS  Google Scholar 

  22. T. Banerjee, S. Basak, S.K. Gupta, T.C. Ghosh, J. Biomol. Struct. Dyn. 22, 13–23 (2004)

    Article  CAS  Google Scholar 

  23. H. Chiapello, F. Lisacek, M. Caboche, A. Hénaut, Gene 209, GC1–GC38 (1998). doi:https://doi.org/10.1016/S0378-1119(97)00671-9

    Article  CAS  Google Scholar 

  24. R.J. Epstein, K. Lin, T.W. Tan, Gene 245, 291–298 (2000). doi:https://doi.org/10.1016/S0378-1119(00)00042-1

    Article  CAS  Google Scholar 

  25. J. Ma, T. Zhou, W. Gu, X. Sun, Z. Lu, Biosystems 65, 199–207 (2002). doi:https://doi.org/10.1016/S0303-2647(02)00016-3

    Article  CAS  Google Scholar 

  26. M. Xiang-Ru, X. Shao-Bo, F. Liu-Rong, C. Huan-Chun, Acta Genet. Sin. 32, 616–624 (2005)

    Google Scholar 

  27. J.D. Hall, J.S. Gibbs, D.M. Coen, D.W. Mount, DNA 5, 281–288 (1986)

    Article  CAS  Google Scholar 

  28. S. Karlin, B.E. Blaisdell, G.A. Schachtel, J. Virol. 64, 4264–4273 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. T.E. Toth, Am. J. Vet. Res. 31, 1275–1279 (1970)

    CAS  PubMed  Google Scholar 

  30. S.J. Proctor, Am. J. Vet. Res. 37, 427–431 (1976)

    CAS  PubMed  Google Scholar 

  31. X.F. Qi, X.Y. Yang, A.C. Cheng, M.S. Wang, D.K. Zhu, R.Y. Jia, Avian Pathol. 37, 307–310 (2008). doi:https://doi.org/10.1080/03079450802043775

    Article  CAS  Google Scholar 

  32. T.S. Sandhu, S.A. Shawky, in Diseases of Poultry, 11th edn., ed. by Y.M. Saif, H.J. Barnes, J.R. Glisson, A.M. Fadly, L.R. McDougald, D.E. Swayne (Iowa State Press, Ames, 2003), p. 354

    Google Scholar 

  33. S. Shawky, T. Sandhu, H.L. Shivaprasad, Avian Dis. 44, 590–599 (2000). doi:https://doi.org/10.2307/1593098

    Article  CAS  Google Scholar 

  34. M.R. Islam, J. Nessa, K.M. Halder, Avian Pathol. 22, 389–393 (1993). doi:https://doi.org/10.1080/03079459308418929

    Article  CAS  Google Scholar 

  35. L. Knizewski, L. Kinch, N.V. Grishin, L. Rychlewski, K. Ginalski, J. Virol. 80, 2575–2577 (2006). doi:https://doi.org/10.1128/JVI.80.5.2575-2577.2006

    Article  CAS  PubMed Central  Google Scholar 

  36. H.Y. Zhu, T. Murata, F. Goshima, H. Takakuwa, T. Koshizuka, Y. Yamauchi, Y. Nishiyama, Virus Genes 22, 321–327 (2001). doi:https://doi.org/10.1023/A:1011118424474

    Article  CAS  Google Scholar 

  37. F. Wright, Gene 87, 23–29 (1990). doi:https://doi.org/10.1016/0378-1119(90)90491-9

    Article  CAS  Google Scholar 

  38. J.A. Novembre, Mol. Biol. Evol. 19, 1390–1394 (2002)

    Article  CAS  Google Scholar 

  39. J.M. Comeron, J. Mol. Evol. 47, 268–274 (1998). doi:https://doi.org/10.1007/PL00006384

    Article  CAS  Google Scholar 

  40. H. Lu, W.M. Zhao, Y. Zheng, H. Wang, M. Qi, X.P. Yu, Acta Biochim. Biophys. Sin. (Shanghai) 371, 1–10 (2005)

    Article  Google Scholar 

  41. F. Jeanmougin, J.D. Thompson, M. Gouy, D.G. Higgins, T.J. Gibson, Trends Biochem. Sci. 23, 403–405 (1998). doi:https://doi.org/10.1016/S0968-0004(98)01285-7

    Article  CAS  Google Scholar 

  42. P. Jiang, X. Sun, Z. Lu, J. Genet, Genomics 34, 275–284 (2007). doi:https://doi.org/10.1016/S1673-8527(07)60029-0

    CAS  Google Scholar 

  43. W.J. Blake, M. Kaern, C.R. Cantor, J.J. Collins, Nature 422, 633–637 (2003). doi:https://doi.org/10.1038/nature01546

    Article  CAS  Google Scholar 

  44. N. Sueoka, J. Mol. Evol. 34, 95–114 (1992). doi:https://doi.org/10.1007/BF00182387

    Article  CAS  Google Scholar 

  45. X.F. Wan, D. Xu, A. Kleinhofs, J. Zhou, G. Jobb, BMC Evol. Biol. 4, 19 (2004). doi:https://doi.org/10.1186/1471-2148-4-19

    Article  PubMed Central  Google Scholar 

  46. P.M. Sharp, T.M. Tuohy, K.R. Mosurski, Nucleic Acids Res. 14, 5125–5143 (1986). doi:https://doi.org/10.1093/nar/14.13.5125

    Article  CAS  PubMed Central  Google Scholar 

  47. H. Romero, A. Zavala, H. Musto, G. Bernardi, Gene 317, 141–147 (2003). doi:https://doi.org/10.1016/S0378-1119(03)00701-7

    Article  CAS  Google Scholar 

  48. S. Karlin, J. Mrázek, J. Mol. Biol. 262, 459–472 (1996). doi:https://doi.org/10.1006/jmbi.1996.0528

    Article  CAS  Google Scholar 

  49. T.C. Ghosh, S.K. Gupta, S. Majumdar, Int. J. Parasitol. 30, 715–722 (2000). doi:https://doi.org/10.1016/S0020-7519(00)00042-4

    Article  CAS  Google Scholar 

  50. D. Bachtrog, Genetics 165, 1221–1232 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. J.R. Powell, E.N. Moriyama, Proc. Natl. Acad. Sci. USA 94, 7784–7790 (1997). doi:https://doi.org/10.1073/pnas.94.15.7784

    Article  CAS  Google Scholar 

  52. H.X. Li, S.W. Liu, X.G. Kong, Virus Genes 33, 221–227 (2006). doi:https://doi.org/10.1007/s11262-005-0060-6

    Article  CAS  Google Scholar 

  53. S.W. Liu, S.H. Chen, H.X. Li, X.G. Kong, Gene 401, 88–96 (2007). doi:https://doi.org/10.1016/j.gene.2007.06.022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (30771598), New Century Excellent Talents program in University (NCET-06-0818), Scientific and Technological Innovation Major Project Funds in University (706050), National Science and Technology Support Programs (2007Z06-017), the Cultivation Fund of the Key Scientific and Technical Innovation Project, department of Education of Sichuan Province (07ZZ028), Sichuan Province Outstanding Youths Fund (03ZQ026-029/05ZQ026-038/07ZQ026-132), Sichuan Province Research Program (04JY021-100/04JY029-006-1/05JY029-109/05JY029-003/07JY029-016/07ZA051) and Program for Key Disciplines Construction of Sichuan Province (SZD0418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anchun Cheng.

Additional information

Renyong Jia, Anchun Cheng, Mingshu Wang, and Hongyi Xin contributed equally to this work and should be considered as first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, R., Cheng, A., Wang, M. et al. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes 38, 96–103 (2009). https://doi.org/10.1007/s11262-008-0295-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-008-0295-0

Keywords

Navigation