Skip to main content

Advertisement

Log in

Recombination structure and genetic relatedness among members of the family Bromoviridae based on their RNAs 1 and 2 sequence analyses

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

In determining putative recombination events and their evolution rates in the RNAs 1 and 2 of currently the known members of the family Bromoviridae, a detailed study comprising 107 accessions retrieved from the international databases, has been carried out by using RECCO and RDP v3.31β algorithms. These programs allowed the detection of potential recombination sites in all the five virus genera composing the family Bromoviridae with various degrees of consistency. The RNAs 1 and 2 showed inferred phylogenies fully congruent and clearly delineated five clusters representing the five studied virus genera. In this respect, we proposed to classify the Ilarviruses in three distinct subgroups instead of 10 as mentioned in several reports of the International Committee on Taxonomy of Viruses where its suggestions were based on antigenic differences. Moreover, we confirmed that Alfalfa mosaic virus should be considered as a component of the Ilarvirus genus instead of being the unique representative of Alfamovirus genus. In addition, Pelargonium zonate spot and Olive latent 2 viruses fully deserve their affiliation to the family Bromoviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R. Aaziz, M. Tepfer, J. Gen. Virol. 80, 1339–1346 (1999)

    Article  CAS  Google Scholar 

  2. M. Alejska, A. Kurzyniska-Kokorniak, M. Broda, R. Kierzek, M. Figlerowicz, Acta Biochim. Pol. 48, 391–407 (2001)

    CAS  PubMed  Google Scholar 

  3. M. Baroth, M. Orlich, H.J. Thiel, P. Becher, Virology 278, 456–466 (2000). doi:https://doi.org/10.1006/viro.2000.0644

    Article  CAS  Google Scholar 

  4. M.F. Boni, D. Posada, M.W. Feldman, Genetics 176, 1035–1047 (2007). doi:https://doi.org/10.1534/genetics.106.068874

    Article  CAS  Google Scholar 

  5. M. Boulila, Phytopathol. Mediterr. 46, 285–294 (2007)

    CAS  Google Scholar 

  6. M. Boulila, Plant Mol. Biol. Rep. (2008). doi: https://doi.org/10.1007/s11105-008-0071-2

    Article  Google Scholar 

  7. F.M. Codoner, S.F. Elena, Arch. Virol. 151, 299–307 (2006). doi:https://doi.org/10.1007/s00705-005-0628-4

    Article  CAS  Google Scholar 

  8. F.M. Codoner, S.F. Elena, J. Gen. Virol. 89, 1739–1747 (2008). doi:https://doi.org/10.1099/vir.0.2008/000166-0

    Article  CAS  Google Scholar 

  9. E. Domingo, J. Holland, C. Biebricher, M. Eigen, in Molecular Basis of Virus Evolution, ed. by A.J. Gibbs, C.H. Calisher, F. Garcia-Arenal (Cambridge University Press, Cambridge, 1995), pp. 181–191

    Chapter  Google Scholar 

  10. M. Eigen, Trends Microbiol. 4, 216–218 (1996). doi:https://doi.org/10.1016/0966-842X(96)20011-3

    Article  CAS  Google Scholar 

  11. C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball, Eighth Report of the International Committee on Taxonomy of Viruses (Elsevier/Academic Press, London, 2005)

    Google Scholar 

  12. F. Garcia-Arenal, B.A. McDonald, Phytopathology 93, 941–952 (2003). doi:https://doi.org/10.1094/PHYTO.2003.93.8.941

    Article  Google Scholar 

  13. D. Gallitelli, M. Finetti-Sialer, G.P. Martelli, Arch. Virol. 150, 407–411 (2005). doi:https://doi.org/10.1007/s00705-004-0450-4

    Article  CAS  Google Scholar 

  14. M.J. Gibbs, J.S. Armstrong, A.J. Gibbs, Bioinformatics 16, 573–582 (2000). doi:https://doi.org/10.1093/bioinformatics/16.7.573

    Article  CAS  Google Scholar 

  15. A.E. Greene, R.F. Allison, Science 263, 1423–1425 (1994)

    Article  CAS  Google Scholar 

  16. J.J. Holland, J.C. DeLaTorre, D.A. Steinhauer, in Genetic Diversity of RNA Viruses, ed. by J.J. Holland (Springer-Verlag, Berlin, 1992), pp. 1–20

    Chapter  Google Scholar 

  17. E.M.J. Jaspars, L. Bos, in: CMI/AAB. Descriptions of Plant viruses, no 229 (1980)

  18. E.V. Koonin, A.E. Gorbalenya, J. Mol. Evol. 28, 524–527 (1989). doi:https://doi.org/10.1007/BF02602932

    Article  CAS  Google Scholar 

  19. S.L. Kosakovsky Pond, D. Posada, M.B. Gravenor, C.H. Woelk, S.D.W. Frost, Mol. Biol. Evol. 23(10), 1891–1901 (2006)

    Article  Google Scholar 

  20. S. Kumar, M. Nei, J. Dudley, K. Tamura, Brief. Bioinform. 9(4), 299–306 (2008). doi:https://doi.org/10.1093/bib/bbn017

    Article  CAS  Google Scholar 

  21. M.M.C. Lai, Microbiol. Rev. 56, 61–79 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. J.P. Legg, J.M. Thresh, Virus Res. 71, 135–149 (2000). doi:https://doi.org/10.1016/S0168-1702(00)00194-5

    Article  CAS  Google Scholar 

  23. M.A. Larkin, G. Blackshileds, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, D.G. Higgins, Bioinformatics 23(21), 2947–2948 (2007). doi:https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  Google Scholar 

  24. D. Martin, E. Rybicki, Bioinformatics 16, 562–563 (2000). doi:https://doi.org/10.1093/bioinformatics/16.6.562

    Article  CAS  Google Scholar 

  25. D.P. Martin, D. Posada, K.A. Crandall, C. Williamson, AIDS Res. Hum. Retroviruses 21, 98–102 (2005). doi:https://doi.org/10.1089/aid.2005.21.98

    Article  CAS  Google Scholar 

  26. D.P. Martin, C. Williamson, D. Posada, Bioinformatics 21, 260–262 (2005). doi:https://doi.org/10.1093/bioinformatics/bth490

    Article  CAS  Google Scholar 

  27. J. Maydt, T. Lengauer, Bioinformatics 22(9), 1064–1071 (2006). doi:https://doi.org/10.1093/bioinformatics/btl057

    Article  CAS  Google Scholar 

  28. F. Monci, S. Sanchez-Campos, J. Navas-Castillo, E. Moriones, Virology 303, 317–326 (2002). doi:https://doi.org/10.1006/viro.2002.1633

    Article  CAS  Google Scholar 

  29. M. Nagai, Y. Sakoda, M. Mori, M. Hayashi, H. Kida, H. Akashi, J. Gen. Virol. 84(Pt 2), 447–452 (2003). doi:https://doi.org/10.1099/vir.0.18773-0

    Article  CAS  Google Scholar 

  30. M. Padidam, S. Sawyer, C.M. Fauquet, Virology 265, 218–225 (1999). doi:https://doi.org/10.1006/viro.1999.0056

    Article  CAS  Google Scholar 

  31. D. Posada, K. Crandall, Proc. Natl. Acad. Sci. USA 98, 13757–13762 (2001). doi:https://doi.org/10.1073/pnas.241370698

    Article  CAS  Google Scholar 

  32. D. Posada, K.A. Crandall, J. Mol. Evol. 54, 396–402 (2002)

    Article  CAS  Google Scholar 

  33. C. Rampitsch, K.C. Eastwell, Arch. Virol. 142, 1911–1918 (1997). doi:https://doi.org/10.1007/s007050050210

    Article  CAS  Google Scholar 

  34. P.J. Schiel, P.H. Berger, J. Gen. Virol. 81, 273–278 (2000)

    Article  Google Scholar 

  35. M. Schierup, J. Hein, Genetics 156, 879–891 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Schierup, J. Hein, Mol. Biol. Evol. 17, 1578–1579 (2000)

    Article  CAS  Google Scholar 

  37. S.W. Scott, M.T. Zimmerman, X. Ge, Arch. Virol. 143, 1187–1198 (1998). doi:https://doi.org/10.1007/s007050050366

    Article  CAS  Google Scholar 

  38. J.M. Smith, J. Mol. Evol. 34, 126–129 (1992)

    CAS  PubMed  Google Scholar 

  39. I.E. Tzanetakis, R.R. Martin, Virus Res. 112, 32–37 (2005). doi:https://doi.org/10.1016/j.virusres.2005.02.010

    Article  CAS  Google Scholar 

  40. G.F. Weiller, Mol. Biol. Evol. 15, 326–335 (1998)

    Article  CAS  Google Scholar 

  41. M. Worobey, E.C. Holmes, J. Gen. Virol. 80, 2535–2543 (1999)

    Article  CAS  Google Scholar 

  42. D. Zimmern, in RNA Genetics, ed. by J.J. Holland, E.R. Domingo, P. Ahlquist (CRC Press, Boca Raton, 1988), pp. 211–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Boulila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulila, M. Recombination structure and genetic relatedness among members of the family Bromoviridae based on their RNAs 1 and 2 sequence analyses. Virus Genes 38, 435–444 (2009). https://doi.org/10.1007/s11262-009-0340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-009-0340-7

Keywords

Navigation