Skip to main content
Log in

Utility of high-throughput DNA sequencing in the study of the human papillomaviruses

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The Papillomaviridae family is probably the most diverse group of viruses that affect vertebrates. The study of the relationship between infection by certain types of human papillomavirus (HPV) and the development of neoplastic epithelial lesions is of particular interest because of the high prevalence of HPV-related carcinomas in populations of developing countries. To understand the mechanisms of infection and their association with different clinical manifestations, molecular tools play an important role in the description of new types of HPV, the characterization of effector properties of the viral factors, the specific diagnosis and monitoring of HPV types, and the alteration patterns at genetic level in the host. Technological advances in the field of DNA sequencing have led to the development of different next-generation sequencing systems, allowing obtaining a large amount of data and broadening the applications to study viral diseases. In this review, we summarize the main approaches and their perspectives where the use of massively parallel sequencing has been proved as a useful tool in the research of the HPV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. K. Van Doorslaer, Evolution of the Papillomaviridae. Virology 445(1), 11–20 (2013)

    Article  PubMed  Google Scholar 

  2. J. Doorbar, W. Quint, L. Banks, I.G. Bravo, M. Stoler, T.R. Broker, M.A. Stanley, The biology and life-cycle of human papillomaviruses. Vaccine 30, F55–F70 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. R.D. Burk, A. Harari, Z. Chen, Human papillomavirus genome variants. Virology 445(1), 232–243 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. Doorbar, Model systems of human papillomavirus-associated disease. J. Pathol. 238(2), 166–179 (2016)

    Article  PubMed  Google Scholar 

  5. N. Shulzhenko, H. Lyng, G.F. Sanson, A. Morgun, Ménage à trois: an evolutionary interplay between human papillomavirus, a tumor, and a woman. Trends Microbiol. 22(6), 345–353 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. International Human Papillomavirus Reference Center. HPV Reference clones. http://www.nordicehealth.se/hpvcenter/reference_clones/. Accessed 09 Feb 2017

  7. L. Barzon, E. Lavezzo, G. Costanzi, E. Franchin, S. Toppo, G. Palù, Next-generation sequencing technologies in diagnostic virology. J. Clin. Virol. 58(2), 346–350 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. I. Lopez-Martinez, A. Balish, G. Barrera-Badillo, J. Jones, T.E. Nuñez-García, Y. Jang et al., Highly pathogenic avian influenza A (H7N3) virus in poultry workers, Mexico, 2012. Emerg. Infect. Dis. 19(9), 1531 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J.A. Díaz-Quiñonez, J. Ortiz-Alcántara, D.E. Fragoso-Fonseca, F. Garcés-Ayala, N. Escobar-Escamilla, M. Vázquez-Pichardo et al., Complete genome sequences of chikungunya virus strains isolated in Mexico: first detection of imported and autochthonous cases. Genome Announc. 3(3), e00300-15 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  10. F. Garcés-Ayala, A. Rodríguez-Castillo, J.M. Ortiz-Alcántara, E. Gonzalez-Durán, J.M. Segura-Candelas, S.I. Pérez-Agüeros et al., Full-genome sequence of a novel varicella-zoster virus clade isolated in Mexico. Genome Announc. 3(4), e00752-15 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  11. J.E. Muñoz-Medina, I.E. Monroy-Muñoz, A.S. Coy-Arechavaleta, A. Meza-Chávez, J. Ángeles-Martínez, Y.M. Anguiano-Hernández et al., Complete genome sequence of human respiratory syncytial virus isolated in Mexico. Genome Announc. 4(1), e01542-15 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  12. N. Escobar-Escamilla, D.E. Fragoso-Fonseca, D.M. Arreguín-Porras, M. del Carmen Esteban-Valencia, E. Corona-Valdespino, J.I. Falcón-Acosta et al., Complete genome sequence of Hepatitis B virus genotype E: the first molecular characterization from an imported case in Mexico. Genome Announc. 4(2), e00187-16 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  13. J.A. Díaz-Quiñonez, R. Peña-Alonso, E. Mendieta-Condado, F. Garcés-Ayala, E. González-Durán, N. Escobar-Escamilla et al., Complete genome sequence of Zika virus isolated in Mexico, 2016. Genome Announc. 4(4), e00750-16 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  14. S. Datta, R. Budhauliya, B. Das, S. Chatterjee, Next-generation sequencing in clinical virology: discovery of new viruses. World J. Virol. 4(3), 265 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  15. T.L. Meiring, A.T. Salimo, B. Coetzee, H.J. Maree, J. Moodley, I.I. Hitzeroth et al., Next-generation sequencing of cervical DNA detects human papillomavirus types not detected by commercial kits. Virol. J. 9(1), 164 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Y. Ma, R. Madupu, U. Karaoz, C.W. Nossa, L. Yang, S. Yooseph et al., Human papillomavirus community in healthy persons defined by metagenomics analysis of human microbiome project shotgun sequencing data sets. J. Virol. 88(9), 4786–4797 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  17. V. Foulongne, V. Sauvage, C. Hebert, O. Dereure, J. Cheval, M.A. Gouilh et al., Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS ONE 7(6), e38499 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Ekström, L.S.A. Mühr, D. Bzhalava, A. Söderlund-Strand, E. Hultin, P. Nordin et al., Diversity of human papillomaviruses in skin lesions. Virology 447(1), 300–311 (2013)

    Article  PubMed  Google Scholar 

  19. D. Bzhalava, L.S.A. Mühr, C. Lagheden, J. Ekström, O. Forslund, J. Dillner, E. Hultin, Deep sequencing extends the diversity of human papillomaviruses in human skin. Sci. Rep. 4, 5807 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L.S.A. Mühr, D. Bzhalava, C. Lagheden, C. Eklund, H. Johansson, O. Forslund et al., Does human papillomavirus-negative condylomata exist? Virology 485, 283–288 (2015)

    Article  Google Scholar 

  21. A. Ameur, T.L. Meiring, I. Bunikis, S. Häggqvist, C. Lindau, J.H. Lindberg et al., Comprehensive profiling of the vaginal microbiome in HIV positive women using massive parallel semiconductor sequencing. Sci. Rep. 4, 4398 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  22. T.M. Santiago-Rodriguez, M. Ly, N. Bonilla, D.T. Pride, The human urine virome in association with urinary tract infections. Front. Microbiol. 6, 14 (2015)

    PubMed  PubMed Central  Google Scholar 

  23. V. Smelov, D. Bzhalava, L.S.A. Mühr, C. Eklund, B. Komyakov, A. Gorelov et al., Detection of DNA viruses in prostate cancer. Sci. Rep. 6, 25235 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. E.M. de Villiers, Cross-roads in the classification of papillomaviruses. Virology 445(1), 2–10 (2013)

    Article  PubMed  Google Scholar 

  25. K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30(12), 2725–2729 (2013). https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D. Bzhalava, C. Eklund, J. Dillner, International standardization and classification of human papillomavirus types. Virology 476, 341–344 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. L. Li, P. Barry, E. Yeh, C. Glaser, D. Schnurr, E. Delwart, Identification of a novel human gammapapillomavirus species. J. Gen. Virol. 90(10), 2413–2417 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. H. Johansson, D. Bzhalava, J. Ekström, E. Hultin, J. Dillner, O. Forslund, Metagenomic sequencing of “HPV-negative” condylomas detects novel putative HPV types. Virology 440(1), 1–7 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. J.L. Mokili, B.E. Dutilh, Y.W. Lim, B.S. Schneider, T. Taylor, M.R. Haynes et al., Identification of a novel human papillomavirus by metagenomic analysis of samples from patients with febrile respiratory illness. PLoS ONE 8(3), e58404 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J.M. Yu, Y.Y. Ao, G. Zhao, L.L. Li, D. Wang, Z.J. Duan, Identification of a novel strain of human papillomavirus from children with diarrhea in China. Genome Announc. 1(5), e00761-13 (2013)

    PubMed  PubMed Central  Google Scholar 

  31. J.M. Yu, G. Zhao, Y.Y. Ao, L.L. Li, D. Wang, Z.J. Duan, Complete genome sequence of a novel human papillomavirus identified by metagenomic analysis from a child with diarrhea in China. Adv. Virol. 160(2), 549–552 (2015)

    CAS  Google Scholar 

  32. L.S. Arroyo Mühr, E. Hultin, D. Bzhalava, C. Eklund, C. Lagheden, J. Ekström et al., Human papillomavirus type 197 is commonly present in skin tumors. Int. J. Cancer 136(11), 2546–2555 (2015)

    Article  PubMed  Google Scholar 

  33. Z. Liu, S. Yang, Y. Wang, Q. Shen, Y. Yang, X. Deng et al., Identification of a novel human papillomavirus by metagenomic analysis of vaginal swab samples from pregnant women. Virol. J. 13(1), 122 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  34. D. Bzhalava, H. Johansson, J. Ekström, H. Faust, B. Möller, C. Eklund et al., Unbiased approach for virus detection in skin lesions. PLoS ONE 8(6), e65953 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. T.G. Phan, N.P. Vo, M. Aronen, L. Jartti, T. Jartti, E. Delwart, Novel human gammapapillomavirus species in a nasal swab. Genome Announc. 1(2), e00022-13 (2013)

    Article  PubMed Central  Google Scholar 

  36. M. Canuti, M. Deijs, S.M. Jazaeri Farsani, M. Holwerda, M.F. Jebbink, M. de Vries et al., Metagenomic analysis of a sample from a patient with respiratory tract infection reveals the presence of a γ-papillomavirus. Front. Microbiol. 5, 347 (2014)

    PubMed  PubMed Central  Google Scholar 

  37. C. Daudt, F.R. Da Silva, A.F. Streck, M.N. Weber, F.Q. Mayer, S.P. Cibulski, C.W. Canal, How many papillomavirus species can go undetected in papilloma lesions? Sci. Rep. 6, 36480 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nayar, R., & Wilbur, D. C (eds): The Bethesda System for Reporting Cervical Cytology, ed 3. Definitions, Criteria, and Explanatory Notes. New York, Springer, 2015

  39. N.P. Ambulos Jr., L.M. Schumaker, T.J. Mathias, R. White, J. Troyer, D. Wells, K.J. Cullen, Next-generation sequencing-based HPV genotyping assay validated in formalin-fixed, paraffin-embedded oropharyngeal and cervical cancer specimens. J. Biomol. Techn. JBT 27(2), 46 (2016)

    Google Scholar 

  40. L.S. Arroyo, V. Smelov, D. Bzhalava, C. Eklund, E. Hultin, J. Dillner, Next generation sequencing for human papillomavirus genotyping. J. Clin. Virol. 58(2), 437–442 (2013)

    Article  CAS  PubMed  Google Scholar 

  41. L. Barzon, V. Militello, E. Lavezzo, E. Franchin, E. Peta, L. Squarzon et al., Human papillomavirus genotyping by 454 next generation sequencing technology. J. Clin. Virol. 52(2), 93–97 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. V. Militello, E. Lavezzo, G. Costanzi, E. Franchin, B. Di Camillo, S. Toppo et al., Accurate human papillomavirus genotyping by 454 pyrosequencing. Clin. Microbiol. Infect. 19(10), E428–E434 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. C. Conway, R. Chalkley, A. High, K. Maclennan, S. Berri, P. Chengot et al., Next-generation sequencing for simultaneous determination of human papillomavirus load, subtype, and associated genomic copy number changes in tumors. J. Mol. Diagn. 14(2), 104–111 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. H.M. Wood, R. Bolt, K.D. Hunter, Is next-generation sequencing an important tool in HPV subtype diagnosis? Expert Rev. Mol. Diagn. 12(7), 663–665 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. A.J. da Fonseca, R.S. Galvão, A.E. Miranda, L.C.D.L. Ferreira, Z. Chen, Comparison of three human papillomavirus DNA detection methods: next generation sequencing, multiplex-PCR and nested-PCR followed by Sanger based sequencing. J. Med. Virol. 88(5), 888–894 (2015)

    Article  PubMed  Google Scholar 

  46. X. Yi, J. Zou, J. Xu, T. Liu, T. Liu, S. Hua et al., Development and validation of a new HPV genotyping assay based on next-generation sequencing. Am. J. Clin. Pathol. 141(6), 796–804 (2014)

    Article  PubMed  Google Scholar 

  47. PaVE: the papillomavirus knowledge source. HPV Variant genomes. https://pave.niaid.nih.gov/#explore/variants/variant_genomes. Accesed Feb 09, 2017

  48. M. Schiffman, A.C. Rodriguez, Z. Chen, S. Wacholder, R. Herrero, A. Hildesheim et al., A population-based prospective study of carcinogenic human papillomavirus variant lineages, viral persistence, and cervical neoplasia. Can. Res. 70(8), 3159–3169 (2010)

    Article  CAS  Google Scholar 

  49. R.D. Burk, M. Terai, P.E. Gravitt, L.A. Brinton, R.J. Kurman, W.A. Barnes et al., Distribution of human papillomavirus types 16 and 18 variants in squamous cell carcinomas and adenocarcinomas of the cervix. Can. Res. 63(21), 7215–7220 (2003)

    CAS  Google Scholar 

  50. Mirabello, L., Yeager, M., Cullen, M., Boland, J. F., Chen, Z., Wentzensen, N., et al. (2016). HPV16 sublineage associations with histology-specific cancer risk using HPV whole-genome sequences in 3200 women. Journal of the National Cancer Institute, 108(9), djw100

  51. A.A. Chen, T. Gheit, S. Franceschi, M. Tommasino, G.M. Clifford, Human papillomavirus 18 genetic variation and cervical cancer risk worldwide. J. Virol. 89(20), 10680–10687 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. I. Kukimoto, M. Muramatsu, Genetic variations of human papillomavirus type 16: implications for cervical carcinogenesis. Jpn. J. Infect. Dis. 68(3), 169–175 (2015)

    Article  CAS  PubMed  Google Scholar 

  53. I. Kukimoto, T. Maehama, T. Sekizuka, Y. Ogasawara, K. Kondo, R. Kusumoto-Matsuo et al., Genetic variation of human papillomavirus type 16 in individual clinical specimens revealed by deep sequencing. PLoS ONE 8(11), e80583 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  54. C.M. de Oliveira, I.G. Bravo, N.C.S. e Souza, M.L.N.D. Genta, J.H.T.G. Fregnani, M. Tacla et al., High-level of viral genomic diversity in cervical cancers: a Brazilian study on human papillomavirus type 16. Infect. Genet. Evol. 34, 44–51 (2015)

    Article  CAS  PubMed  Google Scholar 

  55. M. Cullen, J.F. Boland, M. Schiffman, X. Zhang, N. Wentzensen, Q. Yang et al., Deep sequencing of HPV16 genomes: a new high-throughput tool for exploring the carcinogenicity and natural history of HPV16 infection. Papillomavirus Res. 1, 3–11 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  56. E. Lavezzo, G. Masi, S. Toppo, E. Franchin, V. Gazzola, A. Sinigaglia et al., Characterization of intra-type variants of oncogenic human papillomaviruses by next-generation deep sequencing of the E6/E7 region. Viruses 8(3), 79 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  57. P.B. Moussavou, I.H. Koumakpayi, A.A. Nkili-Meyong, I. Labouba, U. Bisvigou, J.K. Chansi et al., Molecular analysis of human papillomavirus detected among women positive for cervical lesions by visual inspection with acetic acid/Lugol’s iodine (VIA/VILI) in Libreville. Gabon. Infect. Agents Cancer 11(1), 50 (2016)

    Article  PubMed  Google Scholar 

  58. J.D. Siqueira, B.M. Alves, I.M. Prellwitz, C. Furtado, Â.R. Meyrelles, E.S. Machado et al., Identification of novel human papillomavirus lineages and sublineages in HIV/HPV-coinfected pregnant women by next-generation sequencing. Virology 493, 202–208 (2016)

    Article  CAS  PubMed  Google Scholar 

  59. B. Xu, S. Chotewutmontri, S. Wolf, U. Klos, M. Schmitz, M. Dürst, E. Schwarz, Multiplex identification of human papillomavirus 16 DNA integration sites in cervical carcinomas. PLoS ONE 8(6), e66693 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. M. Tuna, C.I. Amos, Next generation sequencing and its applications in HPV-associated cancers. Oncotarget 8(5), 8877 (2016)

    PubMed Central  Google Scholar 

  61. T.K. Chung, P. Van Hummelen, P.K. Chan, T.H. Cheung, S.F. Yim, M.Y. Yu et al., Genomic aberrations in cervical adenocarcinomas in Hong Kong Chinese women. Int. J. Cancer 137(4), 776–783 (2015)

    Article  CAS  PubMed  Google Scholar 

  62. W.S. Liang, J. Aldrich, S. Nasser, A. Kurdoglu, L. Phillips, R. Reiman et al., Simultaneous characterization of somatic events and HPV-18 integration in a metastatic cervical carcinoma patient using DNA and RNA sequencing. Int. J. Gynecol. Cancer 24(2), 329 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  63. Y. Liu, Z. Lu, R. Xu, Y. Ke, Comprehensive mapping of the human papillomavirus (HPV) DNA integration sites in cervical carcinomas by HPV capture technology. Oncotarget 7(5), 5852 (2016)

    PubMed  Google Scholar 

  64. D.W. Ho, K.M. Sze, I.O. Ng, Virus-Clip: a fast and memory-efficient viral integration site detection tool at single-base resolution with annotation capability. Oncotarget 6(25), 20959 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  65. M. Forster, S. Szymczak, D. Ellinghaus, G. Hemmrich, M. Rühlemann, L. Kraemer et al., Vy-PER: eliminating false positive detection of virus integration events in next generation sequencing data. Sci. Rep. 5, 11534 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  66. P. Chandrani, V. Kulkarni, P. Iyer, P. Upadhyay, R. Chaubal, P. Das et al., NGS-based approach to determine the presence of HPV and their sites of integration in human cancer genome. Br. J. Cancer 112(12), 1958–1965 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. G. Gao, S.H. Johnson, J.L. Kasperbauer, B.W. Eckloff, N.M. Tombers, G. Vasmatzis, D.I. Smith, Mate pair sequencing of oropharyngeal squamous cell carcinomas reveals that HPV integration occurs much less frequently than in cervical cancer. J. Clin. Virol. 59(3), 195–200 (2014)

    Article  PubMed  Google Scholar 

  68. C.M. Ho, T.Y. Chien, S.H. Huang, B.H. Lee, S.F. Chang, Integrated human papillomavirus types 52 and 58 are infrequently found in cervical cancer, and high viral loads predict risk of cervical cancer. Gynecol. Oncol. 102(1), 54–60 (2006)

    Article  PubMed  Google Scholar 

  69. R.K. Basho, A.K. Eterovic, Clinical applications and limitations of next-generation sequencing. Am. J. Hematol. Oncol. 11(3), 17–22 (2015)

    Google Scholar 

  70. J.D. Salter, R.P. Bennett, H.C. Smith, The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41(7), 578–594 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. J.P. Vartanian, D. Guétard, M. Henry, S. Wain-Hobson, Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science 320(5873), 230–233 (2008)

    Article  CAS  PubMed  Google Scholar 

  72. I. Kukimoto, S. Mori, S. Aoyama, K. Wakae, M. Muramatsu, K. Kondo, Hypermutation in the E2 gene of human papillomavirus type 16 in cervical intraepithelial neoplasia. J. Med. Virol. 87(10), 1754–1760 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. K. Wakae, S. Aoyama, Z. Wang, K. Kitamura, G. Liu, A.M. Monjurul et al., Detection of hypermutated human papillomavirus type 16 genome by Next-Generation Sequencing. Virology 485, 460–466 (2015)

    Article  CAS  PubMed  Google Scholar 

  74. R.A. Lleras, R.V. Smith, L.R. Adrien, N.F. Schlecht, R.D. Burk, T.M. Harris et al., Unique DNA methylation loci distinguish anatomic site and HPV status in head and neck squamous cell carcinoma. Clin. Cancer Res. 19(19), 5444–5455 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. W. Verlaat, P.J. Snijders, P.W. Novianti, S.M. Wilting, L.M. De Strooper, G. Trooskens et al., Genome-wide DNA methylation profiling reveals methylation markers associated with 3q gain for detection of cervical pre-cancer and cancer. Clin. Cancer Res. 23(14), 3813–3822 (2017)

    Article  CAS  PubMed  Google Scholar 

  76. M.A. Clarke, N. Wentzensen, L. Mirabello, A. Ghosh, S. Wacholder, A. Harari et al., Human papillomavirus DNA methylation as a potential biomarker for cervical cancer. Cancer Epidemiol. Biomark. Prev. 21(12), 2125–2137 (2012)

    Article  CAS  Google Scholar 

  77. C. Sun, T. McAndrew, B.C. Smith, Z. Chen, M. Frimer, R.D. Burk, Characterization of HPV DNA methylation of contiguous CpG sites by bisulfite treatment and massively parallel sequencing—the FRAGMENT approach. Front. Genet. 5, 150 (2014)

    PubMed  PubMed Central  Google Scholar 

  78. M. Frimer, C. Sun, T. McAndrew, B. Smith, A. Harari, Z. Chen et al., HPV16 CpG methyl-haplotypes are associated with cervix precancer and cancer in the Guanacaste natural history study. Gynecol. Oncol. 138(1), 94–100 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. L. Mirabello, M. Frimer, A. Harari, T. McAndrew, B. Smith, Z. Chen et al., HPV16 methyl-haplotypes determined by a novel next-generation sequencing method are associated with cervical precancer. Int. J. Cancer 136(4), E146–E153 (2015)

    Article  CAS  PubMed  Google Scholar 

  80. B. László, A. Ferenczi, L. Madar, E. Gyöngyösi, A. Szalmás, L. Szakács et al., CpG methylation in human papillomavirus (HPV) type 31 long control region (LCR) in cervical infections associated with cytological abnormalities. Virus Genes 52(4), 552–555 (2016)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

G.C.E. received support from Estímulos al Desempeño en Investigación, Comisión y Fomento de Actividades Académicas (Instituto Politécnico Nacional), and Sistema Nacional de Investigadores (SNI, CONACyT). This study was funded by Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional (SIP 20160609 and 20171099). The authors are grateful to Sofia Mulia for kindly translating and correcting the style of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NEE developed the structural design of the review and drafted the manuscript. GCE, JERG, and JADQ reviewed the manuscript critically for important intellectual content and appropriate academic content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Graciela Castro-Escarpulli.

Ethics declarations

Conflicts of interest

The authors declare that they do not have any competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Simon D. Scott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar-Escamilla, N., Ramírez-González, J.E., Castro-Escarpulli, G. et al. Utility of high-throughput DNA sequencing in the study of the human papillomaviruses. Virus Genes 54, 17–24 (2018). https://doi.org/10.1007/s11262-017-1530-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-017-1530-3

Keywords

Navigation