Skip to main content
Log in

Antibacterial activity of three South Indian seagrasses, Cymodocea serrulata, Halophila ovalis and Zostera capensis

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The antibacterial properties of the three seagrasses namely Cymodocea serrulata, Halophila ovalis and Zostera capensis were tested against the human pathogens Staphylococcus aureus, Bacillus cereus, B. subtilis, Escherichia coli, Salmonella paratyphi, Salmonella typhimurium and Micrococcus luteus, using six different solvents namely, petroleum ether, chloroform, ethyl acetate, acetone, methanol and water. Ethyl acetate and methanol extracts showed maximum activity against most of the pathogens when compared to other solvents. Experiments are underway to isolate active compound(s) implicated in controlling the growth of the pathogens in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ballesteros D, Martin D, Uriz MJ (1992) Biological activity of extracts from Mediterranean macrophytes. Bot Mar 35:481–485

    Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turk M (1966) Antibiotic susceptibility by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  Google Scholar 

  • Bernard P, Pesando D (1989) Antibacterial and antifungal activity of extracts from the rhizomes of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Bot Mar 32:85–88

    Google Scholar 

  • Bhosale SH, Nagle VL, Jagtap TG (2002) Antifouling potential of some marine organisms from India against species of Bacillus and Pseudomonas. Mar Biotechnol 4:111–118

    Article  CAS  Google Scholar 

  • Bushmann PJ, Ailstock SM (2006) Antibacterial compounds in estuarine submersed aquatic plants. J Exp Mar Bio Ecol 331:41–50

    Article  Google Scholar 

  • Cariello L, Zanetti L (1979) Effect of Posidonia oceanica extracts on the growth of Staphylococcus aureus. Bot Mar 22:129–131

    Google Scholar 

  • Coughanowr CA, Ngoile M, Lindén O (1995) Coastal zone management in eastern Africa including the island states: a review of issues and initiatives. Ambio 24:448–457

    Google Scholar 

  • Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60

    Article  CAS  Google Scholar 

  • da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1:364–369

    Article  Google Scholar 

  • Devi P, Solimabi W, D’Souza L, Sonak S, Kamat Y, Singbal SYS (1997) Screening of some marine plants for activity against marine fouling bacteria. Bot Mar 40:87–91

    Article  Google Scholar 

  • Devienne KF, Raddi MSG (2002) Screening for antimicrobial activity of natural products using a microplate photometer. Braz J Microbiol 33:166–168

    Article  CAS  Google Scholar 

  • de Vries DJ, Beart PM (1995) Fishing for drugs from the sea: status and strategies. Trends Pharmacol Sci 16:275–279

    Article  Google Scholar 

  • Duarte CM (2000) Marine biodiversity and ecosystem services: an elusive link. J Exp Mar Bio Ecol 250:17–31

    Article  Google Scholar 

  • Dumay O, Costa J, Desjobert J, Pergent G (2004) Variations in the concentration of phenolic compounds in the seagrass Posidonia oceanica under conditions of competition. Phytochemistry 65:3211–3220

    Article  CAS  Google Scholar 

  • Ely R, Supriya T, Naik CG (2004) Antimicrobial activity of marine organisms collected off the coast of South East India. J Exp Mar Bio Ecol 309:121–127

    Article  Google Scholar 

  • Faulkner DJ (2000a) Marine natural products. Nat Prod Rep 17:7–55

    Article  CAS  Google Scholar 

  • Faulkner DJ (2000b) Marine pharmacology. Antonie Van Leeuwenhoek 77:135–45

    Article  CAS  Google Scholar 

  • Francois R, Weber JH (1988) Speciation of methyltin and butyltin compounds in eelgrass (Zostera marina L.) leaf tissue from the great bay estuary (NH). Mar Chem 25:279–289

    Article  CAS  Google Scholar 

  • Gerwick WH, Bernart MW (1993) Eicosanoids and related compounds from marine algae. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology. Pharmaceutical and bioactive natural products, vol 1. Plenum Press, NY, pp 101–152

    Google Scholar 

  • Gullstrom M, Torre-Castro M, Bandeira SO, Bjork M, Dahlberg M, Kautsky N, Ronnback P, Ohman MC (2002) Seagrass ecosystems in the Western Indian Ocean. Ambio 31:588–596

    Article  Google Scholar 

  • Gunderson LH (2001) Managing surprising ecosystems in southern Florida. Ecol Econ 37:371–378

    Article  Google Scholar 

  • Harrison PG (1982) Control of microbial growth and of amphipod grazing by water-soluble compounds from leaves of Zostera marina. Mar Biol 67:225–230

    Article  Google Scholar 

  • Harrison PG, Chan AT (1980) Inhibition of the growth of microalgae and bacteria by extracts of eelgrass (Zostera marina) leaves. Mar Biol 61:21–26

    Article  Google Scholar 

  • Jensen PR, Kensin KM, Porter D, Fenical W (1998) Evidence that a new antibiotic flavone glycoside chemically defends the sea grass Thalassia testudinum against zoosporic fungi. Appl Environ Microbiol 64:1490–1496

    CAS  Google Scholar 

  • Kawasaki W, Matsui K, Akakabe Y, Itai Kajiwara N (1998) Volatiles from Zostera marina. Photochemistry 45:27–29

    Article  Google Scholar 

  • Mazzanti G, Mascellino MT, Battinelli L, Coluccia D, Manganaro M, Saso L (2000) Antimicrobial investigation of semipurified fractions of Ginkgo biloba leaves. J Ethnopharmacol 71:83–88

    Article  CAS  Google Scholar 

  • McMillan C (1986) Sulfated flavonoids and leaf morphology in the Halophila ovalis - minor complex (Hydrocharitaceae) of the Indo-Pacific Ocean. Aquat Bot 25:67–72

    Article  Google Scholar 

  • McMillan C, Zapata O, Escobar L (1980) Sulphated phenolic compounds in seagrasses. Aquat Bot 8:267–278

    Article  CAS  Google Scholar 

  • Moberg F, Rönnbäck P (2003) Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean Coast Manage 46:27–46

    Article  Google Scholar 

  • Moffat D, Ngoile M, Linde´n O, Francis J (1998) The reality of the stomach: coastal management at the local level in eastern Africa. Ambio 27:590–598

    Google Scholar 

  • NCCLS National Committee for Clinical Laboratory Standards (2003) Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically; approved standard M7-A6, 6th edn. National Committee for Clinical Laboratory Standards, Wayne, Pa

    Google Scholar 

  • Premnathan M, Chandra K, Bajpai SK, Kathiresan K (1992) A survey of some Indian marine plants for antiviral activity. Bot Mar 35:321–324

    Article  Google Scholar 

  • Schwartsmann G (2001) Breast cancer in South America: Challenges to improve early detection and medical management of a public health problem. J Clin Oncol 19:118s–124s

    CAS  Google Scholar 

  • Torre-Castro M, Rönnbäck P (2004) Links between humans and seagrasses an example from tropical East Africa. Ocean Coast Manage 47:361–387

    Article  Google Scholar 

  • Valentine JF, Kenneth L, Heck KL Jr, Cinkovish AM (2002) Impacts of seagrass food webs on marine ecosystems: a need for a broader perspective. Bull Mar Sci 7:1361–1368

    Google Scholar 

  • Xu N, Fan X, Yan X, Tseng CK (2004) Screening marine algae from China for their antitumor activities. J App Phycol 16:451–456

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, CAS in Botany, University of Madras, for extending laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Rengasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, C.S., Sarada, D.V.L., Gideon, T.P. et al. Antibacterial activity of three South Indian seagrasses, Cymodocea serrulata, Halophila ovalis and Zostera capensis . World J Microbiol Biotechnol 24, 1989–1992 (2008). https://doi.org/10.1007/s11274-008-9695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9695-5

Keywords

Navigation